Secure Multi-party Database Computing System Based on Serverless Computing
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Secure computation of federated multi-party databases can perform federated querying or federated modeling on private data from multiple databases while preserving data privacy. Such a federation is typically a loosely organized group where the participating databases may dropout unexpectedly. However, existing multi-party secure computation systems usually employ privacy-preserving computation schemes like secret sharing, which require participants to remain online, resulting in poor system availability. Moreover, these systems are unable to predict the number of users or request rates when providing services externally. If the system is deployed on a private cluster or rented virtual machines from a cloud computing platform, it will experience increased latency during sudden bursts of requests and resource waste when the request workload is low, leading to poor overall scalability of the system. With the advancement of cloud computing technology, serverless computing has emerged as a new cloud-native deployment paradigm that offers excellent elastic resource scaling. This study designs a system architecture and an indirect communication scheme within the serverless computing framework to architect a highly scalable and highly available multi-party database secure computation system. This system can tolerate database node disconnections and automatically scale system resources in response to user request traffic changes. A system prototype based on Alibaba Cloud and OceanBase database is implemented. Comprehensive experimental comparisons are conducted. The results show that the proposed system outperforms existing systems in terms of computational cost, system performance, and scalability for tasks such as low-frequency queries and horizontal modeling. It can save up to 78% in computational costs and improve system performance by over 1.6 times. The shortcomings of the proposed system for tasks such as complex queries and vertical modeling are analyzed.

    Reference
    Related
    Cited by
Get Citation

马旭阳,周小凯,郑浩宇,崔斌,徐泉清,杨传辉,晏潇,江佳伟.基于无服务器计算的多方数据库安全计算系统.软件学报,2025,36(3):1-23

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 27,2024
  • Revised:July 16,2024
  • Adopted:
  • Online: September 13,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063