GUI Fuzzing Framework for Mobile Apps Based on Multi-modal Representation
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    GUI fuzzing plays a crucial role in enhancing the reliability and compatibility of mobile apps. However, most existing GUI fuzzing methods are inefficient, mainly because they are coarse-grained, relying solely on single-modal features to understand the GUI pages holistically. The excessive abstraction of app states leads to the neglect of many details, resulting in an insufficient understanding of GUI states and widgets. To address this issue, a GUI fuzzing framework called GUIFuzzer for mobile apps is proposed based on multi-modal representation. This framework leverages multi-modal features, such as visual features, layout context features, and fine-grained meta-attribute features, to jointly infer the semantics of GUI widgets. Then, it trains a multi-level reward-driven deep reinforcement learning model to optimize the GUI event selection strategy, thus improving the efficiency of fuzz testing. The proposed framework is evaluated on a large number of real apps. Experimental results show that GUIFuzzer significantly improves the coverage of fuzz testing compared with existing competitive baselines. A case study is also conducted on customized search for specific targets, namely sensitive API triggering, which further demonstrates the practicality of the GUIFuzzer framework.

    Reference
    Related
    Cited by
Get Citation

张少坤,李元春,雷瀚文,蒋鹏,李锭,郭耀,陈向群.基于多模态表征的移动应用GUI模糊测试框架.软件学报,2024,35(7):3162-3179

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 09,2023
  • Revised:October 30,2023
  • Adopted:
  • Online: January 05,2024
  • Published: July 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063