DDoop: Incremental Pointer Analysis Framework Based on Differential Datalog Evaluation
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Pointer analysis is a core and fundamental technology for software compiler optimization and bug detection. Existing classic pointer analysis frameworks such as Doop will transform the programs to be analyzed and analysis algorithms into Datalog evaluation problems like too large program size and solve them. As a result, the analysis time overhead of a single solution can be high, and the program analysis overhead can hardly be afforded especially in situations where programs are frequently changed and released. In recent years, as a technology that effectively reemploys existing analysis results and improves analysis efficiency under frequent code changes, incremental analysis has caught increasing attention. However, since current incremental pointer analysis techniques are often designed for specific algorithms, the supported pointer analysis options are limited and their usability is significantly restricted. To this end, this study designs and implements Differential Doop (DDoop), an incremental pointer analysis framework based on Differential Datalog evaluation. DDoop implements incremental input fact generation and automatic rewriting for incremental analysis rules, expressing incremental analysis problems of multi-version programs as Differential Datalog evaluation problems. Finally, a mature Differential Datalog solution engine like DDlog can be fully utilized to achieve end-to-end incremental pointer analysis, maximizing compatibility and reuse of existing pointer analysis implementations in Doop and providing transparent support for incrementalization. Additionally, experimental evaluation of DDoop is conducted on widely adopted real-world programs. The results show that compared to the non-incremental Doop framework, DDoop has a significant performance advantage while highly compatible with a variety of pointer analysis rules existing in Doop.

    Reference
    Related
    Cited by
Get Citation

沈天琪,王熙灶,宾向荣,卜磊. DDoop: 基于差分式Datalog求解的增量指针分析框架.软件学报,2024,35(6):2608-2630

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 11,2023
  • Revised:October 30,2023
  • Adopted:
  • Online: January 05,2024
  • Published: June 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063