Stealthy Backdoor Attack Based on Singular Value Decomposition
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Deep neural networks can be affected by well-designed backdoor attacks during training. Such attacks are an attack method that controls the model output during tests by injecting data with backdoor labels into the training set. The attacked model performs normally on a clean test set but will be misclassified as the attack target class when the backdoor labels are recognized. The currently available backdoor attack methods have poor invisibility and are still expected to achieve a higher attack success rate. A backdoor attack method based on singular value decomposition is proposed to address the above limitations. The method proposed can be implemented in two ways: One is to directly set some singular values of the picture to zero, and the obtained picture is compressed to a certain extent and can be used as an effective backdoor triggering label. The other is to inject the singular vector information of the attack target class into the left and right singular vectors of the picture, which can also achieve an effective backdoor attack. The backdoor pictures obtained in the two kinds of processing ways are basically the same as the original picture from a visual point of view. According to the experiments, the proposed method proves that singular value decomposition can be effectively leveraged in backdoor attack algorithms to attack neural networks with considerably high success rates on multiple datasets.

    Reference
    Related
    Cited by
Get Citation

吴尚锡,尹雨阳,宋思清,陈观浩,桑基韬,于剑.基于奇异值分解的隐式后门攻击方法.软件学报,2024,35(5):2400-2413

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 11,2022
  • Revised:March 21,2023
  • Adopted:
  • Online: September 13,2023
  • Published: May 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063