Software Product Line Testing Based on Diverse SAT Solvers and Novelty Search
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Software product line testing is challenging. The similarity-based testing method can improve testing coverage and fault detection rate by increasing the diversity of test suites. Due to its excellent scalability and satisfactory testing effects, the method has become one of the most important test methods for software product lines. How to generate diverse test cases and how to maintain the diversity of test suites are two key issues in this test method. To handle the above issues, this study proposes a software product line test algorithm based on diverse SAT solvers and novelty search (NS). Specifically, the algorithm simultaneously uses two types of diverse SAT solvers to generate diverse test cases. In particular, in order to improve the diversity of stochastic local search SAT solvers, the study proposes a general strategy that is based on a probability vector to generate candidate solutions. Furthermore, two archiving strategies inspired by the idea of the NS algorithm are designed and applied to maintain both the global and local diversity of the test suites. Ablation and comparison experiments on 50 real software product lines verify the effectiveness of both the diverse SAT solvers and the two archiving strategies, as well as the superiority of the proposed algorithm over other state-of-the-art algorithms.

    Reference
    Related
    Cited by
Get Citation

向毅,黄翰,罗川,杨晓伟.基于多样性SAT求解器和新颖性搜索的软件产品线测试.软件学报,2024,35(6):2821-2843

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 12,2022
  • Revised:September 19,2022
  • Adopted:
  • Online: July 05,2023
  • Published: June 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063