Efficient Automated Data Augmentation Algorithm Based on Self-guided Evolution Strategy
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Deep learning has achieved great success in image classification, natural language processing, and speech recognition. Data augmentation can effectively increase the scale and diversity of training data, thereby improving the generalization of deep learning models. However, for a given dataset, a well-designed data augmentation strategy relies heavily on expert experience and domain knowledge and requires repeated attempts, which is time-consuming and labor-intensive. In recent years, automated data augmentation has attracted widespread attention from the academic community and the industry through the automated design of data augmentation strategies. To solve the problem that existing automated data augmentation algorithms cannot strike a good balance between prediction accuracy and search efficiency, this study proposes an efficient automated data augmentation algorithm SGES AA based on a self-guided evolution strategy. First, an effective continuous vector representation method is designed for the data augmentation strategy, and then the automated data augmentation problem is converted into a search problem of continuous strategy vectors. Second, a strategy vector search method based on the self-guided evolution strategy is presented. By introducing historical estimation gradient information to guide the sampling and updating of exploration points, it can effectively avoid the local optimal solution while improving the convergence of the search process. The results of extensive experiments on image, text, and speech datasets show that the proposed algorithm is superior to or matches the current optimal automated data augmentation methods without significantly increasing the time consumption of searches.

    Reference
    Related
    Cited by
Get Citation

朱光辉,陈文忠,朱振南,袁春风,黄宜华.基于自引导进化策略的高效自动化数据增强算法.软件学报,2024,35(6):3013-3035

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 27,2022
  • Revised:September 12,2022
  • Adopted:
  • Online: May 24,2023
  • Published: June 06,2024
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063