Automatic Parallelization Framework for Complex Nested Loops Based on LLVM Pass
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    With the popularization of multi-core processors, automatic parallelization of serial codes in embedded legacy systems is a research hotspot, while there are technical challenges in the automatic parallelization method for complex nested loops with imperfect nested structure and non-affine dependency characteristics. This study proposes an automatic parallelization framework (CNLPF) for complex nested loops based on LLVM Pass. Firstly, a representation model of complex nested loops, namely loop structure tree, is proposed, and the regular region of nested loops is automatically converted into a loop structure tree representation. Then, the data dependency analysis is carried out on the loop structure tree to construct intra-loop and inter-loop dependency relationship. Finally, the parallel loop program is generated based on the OpenMP shared memory programming model. For the 6 program cases in the SPEC2006 data set containing nearly 500 complex nested loops, the statistics of the proportion of complex nested loops and the parallel performance acceleration test were carried out respectively. The results show that the automatic parallelization framework proposed in this study can deal with complex nested loops that cannot be optimized by LLVM Polly, which enhances the parallel compilation and optimization capabilities of LLVM, and the method combined with Polly optimization improves the acceleration effect of Polly optimization alone by 9%-43%.

    Reference
    Related
    Cited by
Get Citation

马春燕,吕炳旭,叶许姣,张雨.基于LLVM Pass的复杂嵌套循环自动并行化框架.软件学报,2023,34(7):3022-3042

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 04,2022
  • Revised:October 08,2022
  • Adopted:
  • Online: December 30,2022
  • Published: July 06,2023
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063