Dynamic Data Protection System for Open Big Data Environment
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Big data has become a national basic strategic resource, and the opening and sharing of data is the core of China's big data strategy. Cloud native technology and lake-house architecture are reconstructing the big data infrastructure and promoting data sharing and value dissemination. The development of big data industry and technology require stronger data security and data sharing capabilities. However, data security in an open environment has become a bottleneck, which restricts the development and utilization of big data technology. The issues of data security and privacy protection have become increasingly prominent both in the open source big data ecosystem and the commercial big data system. Dynamic data protection system under the open big data environment is now facing challenges of data availability, processing efficiency and system scalability and etc. This study proposes a dynamic data protection system BDMasker for the open big data environment. Through a precise query analysis and query rewriting technology based on the query dependency model, it can accurately perceive but not change the original business request, which indicates that the whole process of dynamic desensitization has zero impact on the business. Furthermore, its multi-engine-oriented unified security strategy framework realizes the vertical expansion of dynamic data protection capabilities and the horizontal expansion among multiple computing engines. The distributed computing capability of the big data execution engine can be used to improve the data protection processing performance of the system. The experimental results show that the precise SQL analysis and rewriting technology proposed by BDMasker is effective, the system has good scalability and performance, and the overall performance fluctuates within 3% in the TPC-DS and YCSB benchmark tests.

    Reference
    Related
    Cited by
Get Citation

屠要峰,牛家浩,王德政,高洪,徐进,洪科,阳方.面向开放大数据环境的动态数据保护系统.软件学报,2023,34(3):1213-1235

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 14,2022
  • Revised:September 07,2022
  • Adopted:
  • Online: October 26,2022
  • Published: March 06,2023
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063