Measurement-device-independent Quantum Voting Scheme with Identity Authentication
Author:
Affiliation:

Clc Number:

TP309

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes a measurement-device-independent (MDI) quantum secure direct communication (QSDC) protocol with an identity authentication server to solve the problems concerning identity authentication and protocol feasibility during quantum communication and further puts forward a quantum voting scheme on the basis of the proposed MDI-QSDC protocol. This scheme takes advantage of various technologies, such as MDI quantum key distribution, perfect quantum encryption, and the classical one-time pad. In this way, it not only ensures its unconditional security in theory but also avoids the attack of the vulnerabilities of the measurement equipment by outside attackers in practice. Furthermore, this scheme takes the weak coherent pulses in the BB84 state as quantum resources and only performs single-particle operations and the measurements for identifying Bell states. As a result, this scheme is highly feasible for the present technologies. In addition, it extends the identity authentication function and enables the scrutineer to verify the integrity and correctness of voting information by adopting the Bit Commitment. Simulation results and analysis show that the proposed scheme is correct and has unconditional security in theory, i.e., information-theoretic security. Compared with the existing quantum voting schemes, the proposed scheme is more feasible.

    Reference
    Related
    Cited by
Get Citation

柯唯阳,石润华.基于测量设备无关的可认证身份量子投票方案.软件学报,2023,34(11):5376-5391

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 09,2022
  • Revised:May 31,2022
  • Adopted:
  • Online: June 16,2023
  • Published: November 06,2023
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063