Abstract:Layered key structure plays an important role in quantum communication, in addition to using EPR and GHZ states to achieve layered quantum key distribution, asymmetric high dimensional multi-particle entanglement also provides a new idea for solving layered quantum key distribution. This method is more efficient in the number of quantum channel uses than the conventional quantum key distribution using bipartite links. This study introduces five layered key structures for three users, and gives a partitionable key structure for 4 and 5 users. For the various layered key structures introduced in this study, the above two methods are compared to get the protocol with the highest idealized key rate of each key structure. When the quantum network has more than three users and the key structure can be partitioned, it is proved that the idealized key rate of each layer can be 1 by using the EPR and GHZ states. Finally, the partitionable key structure of four and five users is taken as an example to expand the description.