Label-correlation-based Common and Specific Feature Selection for Hierarchical Classification
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the era of big data, the sizes of data sets in terms of the number of samples, features, and classes have dramatically increased, and the classes usually exists a hierarchical structure. It is of great significance to select features for hierarchical data. In recent years, relevant feature selection algorithms have been proposed. However, the existing algorithms do not take full advantage of the information of the hierarchical structure of classes, and ignore the common and specific features of different class nodes. This study proposes a label- correlation-based feature selection algorithm for hierarchical classification with common and specific features. The algorithm uses recursive regularization to select the corresponding specific features for each internal node of the hierarchical structure, and makes full use of the hierarchical structure to analyze the label correlation, and then utilizes regularized penalty to select the common features of each subtree. Finally, the proposed model not only can address hierarchical tree data, but also can address more complex hierarchical DAG data directly. Experimental results on six hierarchical tree data sets and four hierarchical DAG data sets demonstrate the effectiveness of the proposed algorithm.

    Reference
    Related
    Cited by
Get Citation

林耀进,白盛兴,赵红,李绍滋,胡清华.基于标签关联性的分层分类共有与固有特征选择.软件学报,2022,33(7):2667-2682

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 27,2020
  • Revised:January 27,2021
  • Adopted:
  • Online: July 16,2022
  • Published: July 06,2022
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063