Privacy Preserving Friend Discovery of Matrix Confusion Encryption in Mobile Social Networks
Author:
Affiliation:

Clc Number:

TP393

Fund Project:

National Natural Science Foundation of China (61632009, 61472451, 61402543, 61272151, 61502163); Natural Science Foundation of Hu'nan Province of China (2018JJ2147, 2018JJ3203); Hu'nan Provincial Education Department of China (2015C0589, 17C0679); Construct Program of Applied Characteristic Discipline in Hu'nan University of Science and Engineering

  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    With the rapid developments of mobile devices and online social networks, users of mobile social networks (MSNs) can easily discover and make new social interactions with others by profiles matching. However, personal profiles usually contain sensitive information of individuals, while the emerging requirement of profile matching in proximity mobile social networks may occasionally leak the sensitive information and hence violate people's privacy. A profile matching protocol in MSNs is proposed, users utilize the confusion matrix transformation algorithm and dot product to achieve secure and efficient matching results; at the same time, users can customize the matching metrics to involve their own matching preference and to make the matching results more precise. In addition, opportunistic computing is adopted to simulate the real friend making senario to guarantee the effectiveness. Security analysis shows that the proposed scheme possesses higher privacy, serviceability, and lower computation and communication cost. Assessed by real social network data, the results demonstrate that the proposed scheme is superior to the existing works.

    Reference
    [1] Fu YY, Zhang M, Feng DG, Chen KQ. Attribute privacy preservation in social networks based on node anatomy. Ruan Jian Xue Bao/Journal of Software,2014, 25(4):768-780(in Chinese with English abstract). http://www.jos.org.cn/1000-9825/4565.htm[doi:10.13328/j.cnki.jos.004565]
    [2] Zhang L, Li XY, Liu Y. Message in a sealed bottle:Privacy preserving friending in social networks. In:Proc. of the IEEE Int'l Conf. on Distributed Computing Systems (ICDCS). 2013. 327-336.[doi:10.1109/ICDCS.2013.38]
    [3] Wang Y, Vasilakos AV, Jin Q. Survey on mobile social networking in proximity (MSNP):Approaches, challenges and architecture. Wireless Networks, 2013,20(6):1295-1311.[doi:10.1007/s11276-013-0677-7]
    [4] Guo L, Zhang C, Sun J. A privacy-preserving attribute-based authentication system for mobile health networks. IEEE Trans. on Mobile Computing, 2014,13(9):1927-1941.[doi:10.1007/s11276-013-0677-7]
    [5] Guo L, Zhu X, Zhang C. Privacy-preserving attribute-based friend search in geosocial networks with untrusted servers. In:Proc. of the IEEE Int'l Conf. on Global Communications (GLOBALCOM). 2013. 629-634.[doi:10.1109/GLOCOM.2013.6831142]
    [6] Lu R, Lin X, Liang X, Shen X. A secure handshake scheme with symptoms-matching for mHealthcare social network. Mobile Networks and Applications, 2011,16(6):683-694.[doi:10.1007/s11036-010-0274-2]
    [7] Sarpong S, Xu C. A secure and efficient privacy-preserving attribute matchmaking protocol in proximity-based mobile social networks. In:Proc. of the Advanced Data Mining and Applications. 2014. 305-318.[doi:10.1007/978-3-319-14717-8_24]
    [8] Li M, Cao N, Yu S, Lou W. Findu:Privacy-preserving personal profile matching in mobile social networks. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2011. 2435-2443.[doi:10.1109/INFCOM.2011.5935065]
    [9] Yan Z, Ding W, Niemi V. Two schemes of privacy-preserving trust evaluation. Future Generation Computer Systems, 2015,62(C):175-189.[doi:10.1016/j.future.2015.11.006]
    [10] Kiraz MS, Genc ZA, Kardas S. Security and efficiency analysis of the hamming distance computation protocol based on oblivious transfer. Security & Communication Networks, 2015,8(18):4123-4135.[doi:10.1002/sec.1329]
    [11] Zhang R, Zhang J, Zhang Y, Sun J. Privacy-preserving profile matching for proximity-based mobile social networking. IEEE Journal on Selected Areas in Communications, 2013,31(9):656-668.[doi:10.1109/JSAC.2013.SUP.0513057]
    [12] Liao X, Uluagac S, Beyah RA. S-MATCH:Verifiable privacy-preserving profile matching for mobile social services. In:Proc. of the IEEE Int'l Conf. on Dependable Systems and Networks. 2014. 287-298.[doi:10.1109/DSN.2014.37]
    [13] Yi X, Bertino E, Rao FY. Practical privacy-preserving user profile matching in social networks. In:Proc. of the IEEE Int'l Conf. on Data Engineering. 2016. 373-384.[doi:10.1109/ICDE.2016.7498255]
    [14] Pattuk E, Kantarcioglu M, Ulusoy H. Optimizing secure classification performance with privacy-aware feature selection. In:Proc. of the IEEE Int'l Conf. on Data Engineering. 2016. 217-228.[doi:10.1109/ICDE.2016.7498242]
    [15] Jung T, Mao X, Li XY, Tang SW. Privacy preserving data aggregation without secure channel:multivariate polynomial evaluation. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2013. 2634-2642.[doi:10.1109/INFCOM.2013. 6567071]
    [16] Jung T, Li XY, Wan Z, Wan M. Control cloud data access privilege and anonymity with fully anonymous attribute based encryption. IEEE Trans. on Information Forensics and Security, 2015,10(1):190-199.[doi:10.1109/TIFS.2014.2368352]
    [17] Jung T, Li XY. Collusion-tolerable privacy-preserving sum and product calculation without secure channel. IEEE Trans. on Dependable and Secure Computation, 2015,12(1):45-57.[doi:10.1109/TDSC.2014.2309134]
    [18] Jung T, Li XY, Wan Z, Wan M. Privacy preserving cloud data access with multi-authorities. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2013. 2625-2633.[doi:10.1109/INFCOM.2013.6567070]
    [19] Abawajy J, Ninggal MI, Herawan T. Privacy preserving social network data publication. IEEE Communications Surveys & Tutorials, 2016,18(3):1974-1997.[doi:10.1109/COMST.2016.2533668]
    [20] Yan Z, Ding W, Niemi V. Two schemes of privacy-preserving trust evaluation. Future Generation Computer Systems, 2016,62(C):175-189.[doi:10.1016/j.future.2015.11.006]
    [21] Qian J, Qiu F, Wu F. Privacy-preserving selective aggregation of online user behavior data. 2016. 1.[doi:10.1109/TC.2016. 2595562]
    [22] Kim M, Mohaisen A, Cheon JH. Private over-threshold aggregation protocols over distributed databases. IEEE Trans. on Knowledge & Data Engineering, 2016. 1.[doi:10.1109/TKDE.2016.2572686]
    [23] Tsai CH, Liu HW, Ku T. Personal recommendation engine of user behavior pattern and analysis on social networks. In:Proc. of the IEEE Int'l Conf. on Computational Science and Computational Intelligence (CSCI). 2015. 404-409.[doi:10.1109/CSCI.2015.46]
    [24] Mishra BK, Jha N. SEIQRS model for the transmission of malicious objects in computer network. Applied Mathematical Modelling, 2010,34(3):710-715.[doi:10.1016/j.apm.2009.06.011]
    [25] Sun J, Zhang R, Zhang Y. Privacy-preserving spatiotemporal matching. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2013. 800-808.[doi:10.1109/INFCOM.2013.6566867]
    [26] Schweitzer N, Stulman A, Shabtai A. Mitigating denial of service attacks in OLSR protocol using fictitious nodes. IEEE Trans. on Mobile Computing, 2016,15(1):163-172.[doi:10.1109/TMC.2015.2409877]
    [27] Geer DE. Attack surface inflation. IEEE Educational Activities Department, 2011,9(4):85-86.[doi:10.1109/MSP.2011.78]
    [28] Najafabadi MM, Khoshgoftaar TM, Calvert C. Detection of SSH brute force attacks using aggregated netflow data. In:Proc. of the IEEE Int'l Conf. on Machine Learning and Applications (ICMLA). 2016. 283-288.[doi:10.1109/ICMLA.2015.20]
    [29] Niu B, Zhu X, Liu J. Weight-aware private matching scheme for proximity-based mobile social networks. In:Proc. of the IEEE Global Communications Conf. (GLOBECOM). 2013. 3170-3175.[doi:10.1109/GLOCOM.2013.6831559]
    [30] Zhang R, Zhang R, Sun J. Fine-grained private matching for proximity-based mobile social networking. In:Proc. of the IEEE Int'l Conf. on Computer Communications (INFOCOM). 2012. 1969-1977.[doi:10.1109/INFCOM.2012.6195574]
    附中文参考文献:
    [1] 付艳艳,张敏,冯登国,陈开渠.基于节点分割的社交网络属性隐私保护.软件学报,2014,25(4):768-780. http://www.jos.org.cn/1000-9825/4565.htm[doi:10.13328/j.cnki.jos.004565]
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

罗恩韬,王国军,刘琴,孟大程,唐雅媛.移动社交网络中矩阵混淆加密交友隐私保护策略.软件学报,2019,30(12):3798-3814

Copy
Share
Article Metrics
  • Abstract:2438
  • PDF: 4624
  • HTML: 1746
  • Cited by: 0
History
  • Received:September 04,2016
  • Revised:March 18,2018
  • Online: January 23,2019
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063