Bayesian Classifier Algorithm Based on Emerging Pattern for Data Stream
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61672086)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Pattern-Based Bayesian model is one of the solutions for the classification problem in data mining. Most pattern-based Bayesian classifiers consider the supports of patterns in the dataset of the home class only. However, the supports of the patterns in the counterpart class are ignored. In addition, for the high-speed dynamic changes and infinite data stream, pattern-based Bayesian classifier which aims at static datasets can not work. To overcome these problems, EPDS (Bayesian classifier algorithm based on emerging pattern for data stream) is proposed. EPDS is a Bayesian classification model based on the emerging patterns discovered over data stream. In this model, EPDS presents a simple hybrid forests (HYF) data structure to maintain the itemsets of the transactions in memory, and uses a fast pattern extracting mechanism to accelerate the algorithm. EPDS adopts partially-lazy learning strategy to update emerging itemsets continuously, and establishes a local classification model in each class for the test transaction. Experimental results on real and synthetic data streams show that EPDS achieves higher classification accuracy compared to other classic classifiers.

    Reference
    Related
    Cited by
Get Citation

杜超,王志海,江晶晶,孙艳歌.基于显露模式的数据流贝叶斯分类算法.软件学报,2017,28(11):2891-2904

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 15,2017
  • Revised:June 16,2017
  • Adopted:
  • Online: November 03,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063