Community Detection Algorithm Based on Weighted Dense Subgraphs
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61673249, 61572005); Shanxi Scholarship Council of China (201 6-004, 2017-014)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Most community detection algorithms in complex networks find communities based on topological structure of the network. Some important information is included in real network data, which represents data reliability or link closeness. Combined these prior information to detect communities might obtain better clustering results. An overlapping community detection on weighted networks (OCDW) is proposed in this study. Edge weight is defined by combining network topological structure and real information. Then, vertex weight is induced by edge weight. To obtain cluster, OCDW selects seed nodes according to vertex weight. After finding a cluster, edges in this cluster reduce their weights to avoid being selected as a seed node with high probability. Compared with some classical algorithms on 9 real networks including 5 unweighted networks and 4 weighted networks, OCDW shows a considerable or better performance on F-measure, accuracy, separation, NMI, ARI, modularity and time efficiency.

    Reference
    Related
    Cited by
Get Citation

杨贵,郑文萍,王文剑,张浩杰.一种加权稠密子图社区发现算法.软件学报,2017,28(11):3103-3114

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 14,2017
  • Revised:June 16,2017
  • Adopted:
  • Online: November 03,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063