Multiple Kernel Geometric Mean Metric Learning for Heterogeneous Data
Author:
Affiliation:

Clc Number:

Fund Project:

National Natural Science Foundation of China (61502332, 61732011)

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    How to choose a proper distance metric is vital to many machine learning and pattern recognition tasks. Metric learning mainly uses discriminant information to learn a Mahalanobis distance or similarity metric. However, most existing metric learning methods are for numerical data, and it is unreasonable to calculate the similarity between two heterogeneous objects (e.g., categorical data) using traditional distance metrics. Besides, they suffer from curse of dimensionality, resulting in poor efficiency and scalability when the feature dimension is very high. In this paper, a geometric mean metric learning method is proposed for heterogeneous data. The numerical data and categorical data are mapped to a reproducing kernel Hilbert space by using different kernel functions, thus avoiding the negative influence of the high dimensionality of the feature. At the same time, a multiple kernel metric learning model based on geometric mean is introduced to transform the metric learning problem of heterogeneous data into solving the midpoint between two points on the Riemannian manifold. Experiments on benchmark UCI datasets show that the presented method shows promising performances in terms of accuracy in comparison with the state-of-the-art metric learning methods.

    Reference
    Related
    Cited by
Get Citation

齐忍,朱鹏飞,梁建青.混杂数据的多核几何平均度量学习.软件学报,2017,28(11):2992-3001

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 13,2017
  • Revised:June 16,2017
  • Adopted:
  • Online: November 03,2017
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063