Multi-Label Classification Algorithm Based on Association Rule Mining
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (61773208, 61403200, 71671086); Foundation of Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province (OBDMA201602)

  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • |
  • Cited by [2]
  • | |
  • Comments
    Abstract:

    In the real world, multi-label learning has become a hotspot in machine learning research area. In the multi-label learning problem, each instance is usually described by multiple class labels, which could be correlated with each other. It is well known that exploiting label correlations is important for multi-label learning. In this paper, an improved association rule mining algorithm based is designed on the matrix divide-and-conquer strategy. In addition, a proof is given to show the proposed algorithm in finding correct frequent items, and an application of the algorithm to the multi-label learning framework is also provided. Moreover, a global association rule mining and a local association rule mining based multi-label classification methods are proposed. Experimental results on several datasets show that the proposed methods can obtain a better classification performance on 5 different evaluation criteria.

    Reference
    [1] Schapire RE, Singer Y. BoosTexter:A boosting-based system for text categorization. Machine Learning, 2000,39(2):135-168.[doi:10.1023/A:1007649029923]
    [2] Fürnkranz J, Hüllermeier E, Mencía EL, Brinker K. Multilabel classification via calibrated label ranking. Machine Learning, 2008, 73(2):133-153.[doi:10.1007/s10994-008-5064-8]
    [3] Rubin TN, Chambers A, Smyth P, Steyvers M. Statistical topic models for multi-label document classification. Machine Learning, 2012,88(1):157-208.[doi:10.1007/s10994-011-5272-5]
    [4] Cabral RS, Torre FDL, Costeira JP, Bernardino A. Matrix completion for multi-label image classification. In:Proc. of the Advances in Neural Information Processing Systems. 2011. 190-198.
    [5] Zhou Y, Xue H, Geng X. Emotion distribution recognition from facial expressions. In:Proc. of the ACM Int'l Conf. on Multimedia. 2015. 1247-1250.[doi:10.1145/2733373.2806328]
    [6] Lo HY, Wang JC, Wang HM, Lin SD. Cost-Sensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans. on Multimedia, 2011,13(3):518-529.[doi:10.1109/TMM.2011.2129498]
    [7] Wang J, Zhao Y, Wu X, Hua XS. A transductive multi-label learning approach for video concept detection. Pattern Recognition, 2011,44(10-11):2274-2286.[doi:10.1016/j.patcog.2010.07.015]
    [8] Gibaja E, Ventura S. A tutorial on multilabel learning. ACM Computing Surveys, 2015,47(3):1-38.[doi:10.1145/2716262]
    [9] Liu B, Hsu W, Ma Y. Integrating classification and association rule mining. In:Proc. of the Knowledge Discovery and Data Mining (KDD). 1970. 80-86.
    [10] Li W, Han J, Pei K. CMAR:Accurate and efficient classification based on multiple class-association rules. In:Proc. of the Int'l Conf. on Data Mining. 2001. 369-376.[doi:10.1109/ICDM.2001.989541]
    [11] Yin X, Han J. CPAR:Classification based on predictive association rules. In:Proc. of the Int'l Conf. on Data Mining. 2003. 35-42.
    [12] Spyromitros E, Tsoumakas G, Vlahavas I. An empirical study of lazy multilabel classification algorithms. In:Proc. of the Artificial Intelligence:Theories, Models and Applications. 2008. 401-406.[doi:10.1007/978-3-540-87881-0_40]
    [13] Zhang ML, Zhou ZH. ML-KNN:A lazy learning approach to multi-label learning. Pattern Recognition, 2007,40(7):2038-2048.[doi:10.1016/j.patcog.2006.12.019]
    [14] Zhang ML. An improved multi-label lazy learning approach. Journal of Computer Research and Development, 2012,49(11):2271-2282(in Chinese with English abstract).
    [15] Elisseeff AE, Weston J. A kernel method for multi-labelled classification. In:Proc. of the Advances in Neural Information Processing Systems. 2002. 681-687.
    [16] Zhang ML, Zhou ZH. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. on Knowledge and Data Engineering, 2006,18(10):1338-1351.[doi:10.1109/TKDE.2006.162]
    [17] Tsoumakas G, Vlahavas I. Random k-labelsets:An ensemble method for multilabel classification. In:Proc. of the European Conf. on Machine Learning. 2007. 406-417.[doi:10.1007/978-3-540-74958-5_38]
    [18] Zhang ML, Zhang K. Multi-Label learning by exploiting label dependency. In:Proc. of the ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. 2010. 999-1008.[doi:10.1145/1835804.1835930]
    [19] Huang SJ, Zhou ZH. Multi-Label learning by exploiting label correlations locally. In:Proc. of the 26th AAAI Conf. on Artificial Intelligence. 2012. 949-955.
    [20] Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules:Readings in Database Systems. 3rd ed., Morgan Kaufmann Publishers Inc., 1998. 580-592.
    [21] Nguyen TL, Vo B, Snasel V. Efficient algorithms for mining colossal patterns in high dimensional databases. In:Proc. of the Knowledge-Based Systems. 2017. 75-89.[doi:10.1016/j.knosys.2017.01.034]
    [22] Patel K, Kapadia N, Parikh M. Discover multi-label classification using association rule mining. Int'l Journal of Advance Engineering and Research Development, 2014,1(1):18-23.[doi:10.21090/ijaerd.0101004]
    [23] Alazaidah R, Thabtah F, Al-Radaideh QA. A multi-label classification approach based on correlations among labels. Int'l Journal of Advanced Computer Science and Applications, 2015,6(2):52-59.[doi:10.14569/IJACSA.2015.060208]
    [24] Li B, Li H, Wu M, Li P. Multi-Label classification based on association rules with application to scene classification. In:Proc. of the Int'l Conf. for Young Computer Scientists. 2008. 36-41.[doi:10.1109/ICYCS.2008.524]
    [25] Charte F, Rivera A, Jesus MJ, Herrera F. Improving multi-label classifiers via label reduction with association rules. In:Proc. of the Int'l Conf. on Hybrid Artificial Intelligent Systems. 2012. 188-199.[doi:10.1007/978-3-642-28931-6_18]
    [26] Tsoumakas G, Vilcek J, Xioufits ES. Mulan:A Java library for multi-label learning. 2011. http://mulan.sourceforge.net/datasets.html
    附中文参考文献:
    [14] 张敏灵.一种新型多标记懒惰学习算法.计算机研究与发展,2012,49(11):2271-2282.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘军煜,贾修一.一种利用关联规则挖掘的多标记分类算法.软件学报,2017,28(11):2865-2878

Copy
Share
Article Metrics
  • Abstract:2555
  • PDF: 4957
  • HTML: 1525
  • Cited by: 0
History
  • Received:April 13,2017
  • Revised:June 16,2017
  • Online: November 03,2017
You are the first2033441Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063