Sparsity and Smoothing Multi-Regularization Constraints for Blind Image Deblurring
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In order to recover the linear spatial invariant blurred image blindly, a multi-regularization constraint-method for blind image resoration, which is based on the sparsity and the smoothing of the motion blur point spread function (MPSF), is proposed. First, according to the sparsity of the edges in the natural image, a weighted total variation norm (WTV-norm) is applied to the restoration image. Next, inspired from the characteristics of the MPSF, multi-regularization constraints that handle a wide variety of blurring degradations, it is applied to the blur kernel. Finally, a modified variable splitting (MVS) method is proposed to restore the image and simultaneously estimate exactly the blur function. A large number of experimental results indicate that the proposed method can also undo a wide variety of blurring degradations (e.g. motion blur, Gaussian blur, uniform blur, disk blur). In comparison with several recent representative image blind restoration methods, the subjective vision is not only more effective, but the ISNR also improved between 1.20dB and 4.22dB.

    Reference
    Related
    Cited by
Get Citation

唐述,龚卫国,仲建华.稀疏平滑特性的多正则化约束图像盲复原方法.软件学报,2013,24(5):1143-1154

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 13,2012
  • Revised:May 18,2012
  • Adopted:
  • Online: May 07,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063