Large Margin and Minimal Reduced Enclosing Ball Learning Machine
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, inspired by the support vector machines for classification and the small sphere and large margin method, the study presents a novel large margin minimal reduced enclosing ball learning machine (LMMREB) for pattern classification to improve the classification performance of gap-tolerant classifiers by constructing a minimal enclosing hypersphere separating data with the maximum margin and minimum enclosing volume in the Mercer induced feature space. The basic idea is to find two optimal minimal reduced enclosing balls by adjusting a reduced factor parameter q such that each of binary classes is enclosed by them respectively and the margin between one class pattern and the reduced enclosing ball is maximized. Thus the idea implements implementing both maximum between-class margin and minimum within-class volume. Experimental results obtained with synthetic and real data show that the proposed algorithms are effective and competitive to other related diagrams.

    Reference
    Related
    Cited by
Get Citation

陶剑文,王士同.大间隔最小压缩包含球学习机.软件学报,2012,23(6):1458-1471

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 14,2011
  • Revised:April 11,2011
  • Adopted:
  • Online: June 05,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063