Mining Hierarchical Community Structure Within Networks from Density-Connected Traveling Orders
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [15]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    This paper proposes a density-based network clustering algorithm, TRAVEL. The algorithm produces a traveling order containing clustering with various densities and finds the optimal clusters in it. The traveling order is subsequently transformed into a data structure of contiguous subinterval heap based on which a clustering algorithm, HCLU, is designed to find the hierarchical cluster boundaries of the network without any user interaction. Experimental results on real-world and computer-generated synthetic networks show that the clustering accuracy of the proposed algorithms is higher than the baseline methods. Furthermore, they are able to produce robust hierarchical communities in various networks with low redundancy in the presence of noise.

    Reference
    [1] Guimera R, Amaral LN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):1-2. [doi: 10.1038/nature03288]
    [2] Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Sciences,2002,9(12):1-2.
    [3] Kleinberg JM. Authoritative sources in a hyperlinked environment. In: Howard K, ed. Proc. of the 9th ACM-SIAM Symp. onDiscrete Algorithms. Philadelphia: SIAM, 1998. 1-2.
    [4] Domingos P, Richardson M. Mining the network value of customers. In: Lee D, ed. Proc. of the 7th ACM SIGKDD Int’l Conf. onKnowledge Discovery and Data Mining. New York: ACM, 2001. 1-2. [doi: 10.1145/502512.502525]
    [5] Wang Y, Chakrabart D, Wang C, Faloutsos C. Epidemic spreading in real networks. ACM Trans. on Information and SystemSecurity, 2008,10(4):1-2. [doi: 10.1109/RELDIS.2003.1238052]
    [6] Yang B, Liu DY, Liu JM, Jin D, Ma HB. Complex network clustering algorithms. Journal of Software, 2009,20(1):1-2 (inChinese with English abstract). http://www.jos.org.cn/1000-9825/20/54.htm [doi: 10.3724/SP.J.1001.2009.00054]
    [7] Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004,69(2):026113. [doi:10.1103/PhysRevE.69.026113]
    [8] Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Physical Review E, 2004,70(6):66111.[doi: 10.1103/PhysRevE.70.066111]
    [9] Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of StatisticalMechanics: Theory and Experiment, 2008,2008(10):P10008. [doi: 10.1088/1742-5468/2008/10/P10008]
    [10] Xu X, Yuruk N, Feng Z, Schweiger TAJ. SCAN: A structural clustering algorithm for networks. In: Berkhin P, ed. Proc. of the13th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. New York: ACM, 2007. 1-2.
    [11] Ester M, Kriegel HP, Jorg S, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, ed. Proc. of the 2nd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. New York: ACM, 1996.1-2.
    [12] Ankerst M, Breunig MM, Kriegel HP, Sander J. Optics: Ordering points to identify the clustering structure. In: Davidson SB,Faloutsos C, eds. Proc. of the 1999 ACM SIGMOD Int’l Conf. on Management of Data. New York: ACM, 1999. 1-2. [doi:10.1145/304182.304187]
    [13] Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms. Physical Review E, 2008,78(4):046110. [doi: 10.1103/PhysRevE.78.046110]
    [14] Lancichinetti A, Fortunato S. Community detection algorithms: A comparative analysis. Physical Review E, 2009,80(5):056117.[doi: 10.1103/PhysRevE.80.056117]
    [15] Fortunato S, Barthelemy M. Resolution limit in community detection. Proc. of the National Academy of Sciences, 2007,104(1):1-2. [doi: 10.1073/pnas.0605965104]
    Comments
    Comments
    分享到微博
    Submit
Get Citation

黄健斌,孙鹤立,Dustin BORTNER,刘亚光.从链接密度遍历序列中挖掘网络社团的层次结构.软件学报,2011,22(5):951-961

Copy
Share
Article Metrics
  • Abstract:5658
  • PDF: 7515
  • HTML: 0
  • Cited by: 0
History
  • Received:June 20,2010
  • Revised:August 13,2010
You are the first2032850Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063