Exact Algorithm for Multi-Constrained Shortest Link-Disjoint Paths
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Finding two link-disjoint QoS paths (primary and backup) between source-destination pairs is one of the most significant schemes to provide reliable QoS routing. Current algorithms for seeking multi-constrained link-disjoint path pair (MCLPP) can not always make sure to find the feasible solutions in networks. To solve this problem, this paper analyzes the properties of the optimal solution of MCLPP problem, and then proposes a design principle for the exact algorithm. Based on the design principle, an exact algorithm called link-disjoint optimal multi-constrained paths algorithm (LIDOMPA) is presented, which is able to find multi-constrained shortest link-disjoint path pair for arbitrary networks. To reduce the complexity, this paper introduces three key concepts: The candidate optimal solution, the constricted constraint vector and the structure-aware non-dominance, which effectively reduce the search space of LIDOMPA without loss of exactness. Extensive experiments show that LIDOMPA outperforms the existing algorithms in terms of the ability of obtaining solutions and achieves acceptable running time overhead.

    Reference
    Related
    Cited by
Get Citation

熊 轲,裘正定,郭宇春,张宏科,秦雅娟.多约束最短链路分离路径精确算法.软件学报,2010,21(7):1744-1757

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 20,2008
  • Revised:January 20,2009
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063