• Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Servlet cache can effectively improve the throughput of Servlet container and reduce the response time experienced by the users. But the cache effect is dependent on the hit rate determined by the cache replacement algorithms. Servlets represent some business functions, so mining the business association among Servlets can improve the hit rate of cache replacement algorithms which in turn exhances the performance of Servlet container consequently. However existing literatures such as LRU (least recently used), LFU (least frequently used), GDSF (greedy dual size frequency) rarely take into account the relationships between the Servlets. This paper denotes the business associations as sequential patterns of Servlet container, and presents a k-steps transfer probability graph to denote the access sequential patterns of Servlet container and designs a sequential patterns discovery algorithm KCTPG_Discovery. Two cache replacement algorithms KP-LRU and KP-GDSF are introduced based on the research of the sequential patterns of the Servlets. Comparing with the traditional algorithms such as LRU and GDSF, the experimental results confirm that the hit radio of the cache can be enhanced by using the above algorithms, the two algorithms effectively improve the performance of Servlet container.

    Reference
    [1]Shannon B.JavaTM 2 Platform Enterprise Edition Specification,Vo1.4.Sun Microsystems Inc.,2003.
    [2]Merrill CL.Servlet performance report:Comparing the performance of J2EE servers.2004.http://www.webperformanceinc.com/ library/reports/ServletReport/index.html?wmi=6,1
    [3]Aggarwal C,Wolf JL,Yu PS.Caching on the World Wide Web.IEEE Trans.on Knowledge and Data Engineering,1999,11(1):94-107.
    [4]Li K,Shen H,Tajima K.Cache replacement for transcoding proxy caching.In:Proc.of the the 2005 IEEE/WIC/ACM Int'l Conf.on Web Intelligence (WI'05).IEEE Computer Society,2005.500-507.
    [5]Turner D.Web page caching in Java Web applications.In:Proc.of the Int'l Conf.on Information Technology Coding and Computing (ITCC 2005).Las Vegas:IEEE Computer Society,2005.805-808.
    [6]Shupp R,Andy C,Chuck F.Web sphere dynamic cache:Improving J2EE application performance.IBM System Journal,2004,43(2):351-370.
    [7]Podlipnig S,B(o)sz(o)rmenyi L.A survey of Web cache replacement strategies.ACM Computing Surveys,2003,35(4):374-398.
    [8]Srikant R,Agrawal R.Mining sequential patterns:Generalizations and performance improvements.In:Proc.of the 5th Int'l Conf.on Extending Database Technology.Avignon:Springer-Verlag,1996.3-17.
    [9]Cooley R,Mobasher B,Srivastava J.Web mining:information and pattern discovery on the world wide web.In:Proc.of the 9th IEEE Int'l Conf.on Tools with Artifical Intelligence (ICTAI'97).Newport Beach:IEEE Computer Society,1997.558-567.
    [10]Garofalakis M,Rastogi R,Shim K.Spirit:Sequential pattern mining with regular expression constraints.In:Atkinson MP,Orlowska ME,et al.,eds.Proc.of the Int'l Conf.on Very Large Databases.Edinburgh:Morgan Kaufmann Publishers,1999.223-234.
    [11]Han J,Pei J,Mortazavi-Asl B,Pinto H,Chen QM,Dayal U,Hsu MC.PrefixSpan:Mining sequential patterns efficiently by prefix-projected pattern growth.In:Proc.of the 2001 Int'l Conf.Data Engineering (ICDE 2001).Heidelberg,2001.215-224.
    [12]Cherkasova L.Improving WWW proxies performance with greedy-dual-size-frequency caching policy.Technical Report,HPL-98-69R1,HP Labs:Computer Systems Laboratory,1998.
    [13]Abrams M,Stanbridge C,Abdulla G,Williams S,Fox E.Caching proxies:Limitation and potentials.In:Proc.of the 4th Int'l WWW Conf.Boston:O'Reilly & Assoc,1995.119-133.http://ei.cs.vt.edu/~succeed/WWW4/WWW4.html
    [14]Yang Q,Zhang HH.Web-Log mining for predictive Web caching.IEEE Trans.on Knowledge and Data Engineering,2003,15(4):1050-1054.
    [15]Agrawal R,Srikant R.Mining sequential patterns.In:Yu PS,Chen ASP,eds.Proc.of the 11th Int'l Conf.on Data Engineering.Washington:IEEE Computer Society Press,1995.3-14.
    [16]Mobasher CB,Srivastava J.Data preparation for mining World Wide Web browsing patterns.Journal of Knowledge and Information Systems,1999,1(1):5-32.
    [17]Berkhin P,Becher JD,Randall DJ.Interactive path analysis of Web site traffic.In:Proc.of the ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining (KDD 2001).San Francisco:ACM Press,2001.414-419.
    [18]Huang T,Chen NJ,Wei J,Zhang WB,Zhang Y.OnceAS/Q:A QoS-enabled Web application server.Journal of Software,2004,15(12):1787-1799 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/15/1787.htm
    [19]JavaTM Pet Store Demo 1.3.2.http://java.sun.com/developer/releases/petstore/
    [20]Menascé DA.TPC-W:A benchmark for e-commerce.IEEE Internet Computing,2002,6(3):83-87.
    [18]黄涛,陈宁江,魏峻,张文博,张勇.OnceAS/Q:一个面向QoS的Web应用服务器.软件学报,2004,15(12):1787-1799.http://www.jos.org.cn/1000-9825/15/1787.htm
    Related
    Cited by
Get Citation

李洋,张文博,魏峻,钟华,黄涛.基于序列模式的Servlet容器缓存替换.软件学报,2007,18(7):1592-1602

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 21,2006
  • Revised:June 09,2006
You are the first2035319Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063