Hardware/Software Partitioning Based on Dynamic Combination of Genetic Algorithm and Ant Algorithm
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Genetic algorithm can do colony global searching quickly and stochastically, but can’t efficiently get to optimal results, since it slows down when solving to certain scope. On the other hand, ant algorithm gets to optimal results efficiently, but lacks initial pheromone at the beginning. To solve the hardware/software bi-partitioning problem in embedded system and system-on-a-chip design, the authors put forward a new algorithm based on dynamic combination of genetic algorithm and ant algorithm. The basic idea is: (1) using genetic algorithm to generate preliminary partitioning results, converting them into initial pheromone distribution for ant algorithm, and then using ant algorithm to search for optimal partitioning scheme; (2) while running genetic algorithm, dynamically determining the best combination time of genetic algorithm and ant algorithm to avoid too early or too late termination of the genetic algorithm. The algorithm utilizes the advantages of the two algorithms and overcomes their disadvantages, and it introduces a dynamic combination strategy between them. Experimental results show the algorithm excels genetic algorithm and ant algorithm in performance, and it is discovered that the bigger the partitioning problem is concerned, the better the algorithm performs.

    Reference
    Related
    Cited by
Get Citation

熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分.软件学报,2005,16(4):503-512

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 30,2003
  • Revised:May 08,2004
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063