• Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related
  • |
  • Cited by [16]
  • | |
  • Comments
    Abstract:

    IPSM is an integrated probabilistic image semantic description multi-level model. This model includes input layer, feature layer, semantic layer, synthetical probability layer, probability propagation layer, and semantic mapping layer. Based on the model and characterizing of the image high-level semantic content according to Bayesian theory, SHM (semantic high-level retrieval algorithm) and SRF (high-level semantic relevance feedback) for image retrieval based on high-level semantic content, for user relevance feedback respectively, are designed and implemented. Experimental results indicate that IPSM, SHM and SRF are effective in characterizing image high-level semantic content and can provide sound and robust image retrieval performance.

    Reference
    [1]Rui Y, Huang TS, Chang SF. Image retrieval, current techniques, promising directions, and open issues. Journal of Visual Communication and Image Representation, 1999,10( 1):39~62.
    [2]Colombo C, Bimbo AD, Pala P. Semantics in visual information retrieval. IEEE Multimedia, 1999,6(3):38~53.
    [3]Sheikholeslami G, Chang W, Zhang A. Semantic clustering and querying on heterogeneous features for visual data. In: Proc. of the ACM Multimedia. Bristol: ACM Press, 1998.3~12.
    [4]Fung CY, Loe FK. Learning primitive and scene semantics of images for classification and retrieval. In: Proc. of the ACM Multimedia, Vol 2. Orlando: ACM Press, 1999.9~12.
    [5]Vailaya A, Zhong Y, Jaing AK. A hierarchical system for efficient image retrieval. In: Proc. of the 13th Int'l Conf. on Pattern Recognition. Washington: IEEE Computer Society, 1996. 356~360.
    [6]Su Z, Ma SP, Zhnng HJ. Feature subspaces extraction for content-based image retrieval. Journal of Software, 2003,14(2):190~193(in Chinese with English abstract), http://www.jos.org.cn/1000-9825/14/190.htm
    [7]Iqbal Q, Aggarwal JK. CIRES: A system for content-based retrieval in digital image libraries. In: Proc. of the Invited Session on Content Based Image Retrieval: Techniques and Applications, Int'l Conf. on Control, Automation, Robotics and Vision (ICARCV 2002). Singapore: IEEE Computer Society, 2002. 205~210.
    [8]Koskela M, Laaksonen J, Oja E. Comparison of techniques for content-based image retrieval. In: Proc. of the 12th Scandinavian Conference on Image Analysis (SCIA 2001). 2001. 579~586. http://www.cis.hut.fi/piesom/scia2001.pdf
    [9]Yang YB. Research and application on the key techniques of content-based image retrieval [Ph.D. Thesis]. Nanjing: Nanjing University, 2003 (in Chinese with English abstract).
    [10]Vasconcelos N, Lippman A. Bayesian representations and learning mechanisms for content based image retrieval. In: Proc. of the SPIE: Storage and Retrieval for Media Databases. 2000.43~54. http://citeseer. ist.psu.edu/vasconcelos00bayesian.htm
    [11]Clark P, Niblett T. The CN2 induction algorithm. Machine Learning, 1989,3(4):261~283.
    [12]Lu Y, Hu CH, Zhu XQ. A unified framework for semantics and feature based relevance feedback in image retrieval systems. In:Proc. of the ACM Multimedia. ACM Press. 2000.31~38.
    [13]Laaksonen JT, Koskela JM, Laakso SP, Oja E. Self-Organizing maps as a relevance feedback technique in content-based image retrieval. Pattern Analysis and Applications, 2001,4(6): 140~ 152.
    [14]Smith JR. Image retrieval evaluation. In: IEEE Workshop on Content-based Access of Image and Video Libraries. 1998. 112~113.http://www.ee.columbia.edu/~jrsmith/html/pubs/cbaiv198p.pdf
    [15]苏中,马少平,张宏江.基于内容图像检索的特征子空间抽取.软件学报,2003,14(2):170~173.http://wwwjos.org.ch/1000-9825/14/190.htm
    [16]杨育彬.基于内容的图像检索关键技术及其应用研究[博士学位论文].南京:南京大学,2003.
    Related
Get Citation

王崇骏,杨育彬,陈世福.基于高层语义的图像检索算法.软件学报,2004,15(10):1461-1469

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 07,2003
  • Revised:February 03,2004
You are the first2033450Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063