The Unsupervised Classification Using Evolutionary Strategies and Neural Networks
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A new unsupervised classification method using evolutionary strategies and fuzzy ART (adaptive resonance theory) neural networks is proposed in this paper. First, fuzzy ART neural networks is trained by original input samples under unsupervised way. Then evolutionary strategies is used to generate new training samples near the clusters boundaries of neural networks. Therefore the weights of fuzzy ART neural networks can be revised and refined by training those new generated samples under supervised way. The proposed method resolves the training problem for ART serial neural networks when there are only less training samples available. Consequently, it enhances the performance of ART serial neural networks and extends their application.

    Reference
    Related
    Cited by
Get Citation

黎 明,严超华,刘高航.基于遗传策略和神经网络的非监督分类方法.软件学报,1999,10(12):1310-1315

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 12,1998
  • Revised:December 28,1998
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063