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Abstract:  Nowadays many researches have focused on structural ET based on statement and branch coverage and 
there are few researches on path-oriented ET. To solve this problem, this paper provokes an approach to construct 
the fitness function for test case generation in path-oriented ET based on the similarity evaluation techniques. First, 
a basic model for fitness function design is provided. The core of the model is to evaluate the similarity between the 
execution track and the target path. Accordingly three different algorithms for the similarity evaluation are provided. 
This model can automatically generate fitness function for each target path. The empirical studies present the 
superiority of the approach over several other path-oriented testing techniques, especially for the complex paths. 
Besides, the limitation and the applicable scope of the approach are pointed out. 
Key words: software testing; evolutionary testing; path-oriented testing; fitness function design; similarity 

evaluation 

摘  要: 为了解决目前结构性演化测试主要集中于面向语句、分支等覆盖标准,缺乏面向路径覆盖标准的问题,提
出了基于相似性度量的适应值函数构造方法,以用于生成覆盖指定路径的测试用例.首先给出适应值函数构造基本

模型,即利用测试数据的真实执行轨迹来评估它相对于指定路径的适应值.该模型的核心在于度量执行轨迹与指定

路径之间的相似度,为此给出了 3 种不同的相似度度量算法.该模型可以完全自动化地为每一条目标路径构造出特
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定的适应值函数.实验结果表明,相对于其他路径测试方法,该方法在针对复杂路径的情况下具有一定的优势.此外,
实验结果还指出了该方法的适用性范围和局限所在. 
关键词: 软件测试;演化测试;路径覆盖测试;适应值函数设计;相似性度量 
中图法分类号: TP311   文献标识码: A 

1   Introduction 

Evolutionary Testing (ET) is a promising technique for automatic test case generation. ET uses a kind of 
meta-heuristic search techniques, Genetic Algorithm (GA), to convert the task of test case generation into an 
optimization problem[1,2]. It can be utilized in many fields, such as structural testing, functional testing, safety 
testing, etc[3−8]. In structural ET, each candidate solution in the population could be one single conceivable test case. 
And the global optima are test cases that satisfy the test target, such as the execution of certain statements or a 
specified path of interest[9−11]. Nowadays many researches have focused on structural ET based on statement, branch 
and condition coverage[12]. However, there is a gap on ET based on path-oriented testing. 

Path-Oriented testing is an important structural testing technique, aiming at covering the specified target paths 
or node sequences according to some coverage criteria. As one of the most important complementary criteria of 
statement or branch coverage, it can be more capable in fault detecting[13]. Nowadays the commonly used 
techniques in path-oriented testing include manual test case generation, non-heuristic automatic techniques, static 
analyzing, dynamic methods, etc. However, they all have disadvantages, such as being expensive, inefficient, 
etc[14−18]. 

Fortunately ET can be applied in path-oriented testing. Since ET can search for test cases to cover the desired 
paths intelligently and automatically without any manual work, the process of test case generation becomes quite 
efficient. Besides, as a meta-heuristic search technique, GA is powerful in the complicated search spaces, which 
makes ET especially suitable for the coverage of complex paths[19,20]. 

Therefore, we apply our approach in path-oriented testing using ET, which can generate test cases to cover 
specified paths efficiently. Commonly the fitness function is a numeric representation of the test target and it should be 
designed according to the particular situation, in order to provide a proper guidance for the evolutionary search. Thus 
the fitness function design methods for statement, branch or condition coverage may no longer be suitable for 
path-oriented ET. In this paper, our approach is used to construct the fitness function for path-oriented ET, based on the 
similarity evaluation between the execution track and the target path or node sequence. Accordingly we list three 
different algorithms for the similarity evaluation. The empirical studies present the superiority of our approach over 
several other path-oriented testing techniques, especially for the complex paths with huge search domain, and we point 
out the limitation and the applicable scope of this approach. Correspondingly we also put forward several conclusions 
and some advice for the adaptability of our approach in different situations. 

The rest of the paper is organized as follows. Section 2 briefly introduces the structural ET and points out the lack of 
proper fitness function design methods for path-oriented ET. Section 3 introduces the basic idea of our approach in fitness 
function design for path-oriented ET. Section 4 provides three algorithms for similarity evaluation. Empirical results and 
analysis are illustrated to show the advantages and the limitations of our approach in Section 5, by comparing with other 
commonly used path-oriented testing techniques. Finally in Section 6, we present the conclusion of this paper. 

2   Structural Evolutionary Testing 

Structural ET is an automatic test case generation technique for the prescribed structural coverage criteria. Up 
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to now, most researches in structural ET have concentrated on the statement, branch and condition coverage. 
Depending on the construction of the fitness function, previous work can be divided into three categories: the 
condition-oriented approaches, the full-coverage-oriented approaches, and the hybrid approaches[21,22]. 

In the condition-oriented approaches, the test target is divided into partial aims. ET generates test cases to 
execute all the partial aims one by one, in order to achieve the full coverage. The fitness function computes a static 
distance for each individual that indicates how far it is away from executing a partial aim in the desired 
way[2,5,9,11,22]. In the full-coverage-oriented approaches, ET treats all the program structures as a whole target. It 
tries to generate a test suite with a full coverage directly. Test cases pass through the unexecuted or rarely covered 
statements. Or branches are assigned with higher fitness values[3,22−25]. And in the hybrid approaches, Wegener, et 
al. combine the above ideas by using both the static distance information and the dynamic coverage information[22]. 

Some of the approaches above may be adjusted to fit the path coverage criterion, while others cannot be 
transformed since their basic ideas are not suitable for path-oriented testing. 

For condition-oriented approaches, we can apply them in path-oriented testing by extending them to the 
PC-oriented approach. PC-oriented approach utilizes the path condition (PC) instead of each single branch 
predication to build the fitness function, following the same rules as condition-oriented approaches[26]. However, 
this extended approach has several limitations. For example, it is very complicated and expensive to apply 
PC-oriented approach in the long and complex paths with loops, arrays, sub-procedure calling, etc, because to build 
a fitness function with such an approach it is usually necessary to combine all the branch predications together. 
Even though this combination does not strictly require containing only input parameters as the independent 
variables in many situations, it is strongly recommended to represent the temporal variables with the input 
parameters in order to avoid the “flag variable problem”[26,27]. Thus, the assistance of data-flow analysis will be 
needed to investigate the dependency among variables. Consequently, the complexity and the cost could increase 
due to the features of the loops, arrays, sub-procedure calling, etc. 

As for full-coverage-oriented approaches, it is also very difficult to adjust them to fit the path-oriented testing, 
since its fitness function may easily construct a coarse fitness landscape. For most individuals with low fitness 
values, it cannot tell which one has higher possibility to execute the unexecuted or rarely executed paths. 
Consequently, it cannot provide a strong guidance to direct the evolutionary search from low-fitness regions to 
high-fitness regions. Once encountering some quite complex paths, it can hardly attain a full coverage. 

Finally for hybrid approaches, even though Wegener, et al. proposed a basic idea to apply these approaches in 
path-oriented testing, they did not give the concrete formula of fitness function[22]. Actually the idea of combining 
the static and the dynamic information is good and it may be useful for the statement or the branch coverage. 
However, it is still not suitable for the path coverage criterion. By collecting all the branch predications in the target 
path, these approaches may encounter the same problem in PC-oriented approach, that is, the limitations from 
data-flow analysis. Besides, it may be even harder to balance the weight between multiple predications and the 
approaching levels, thus harder to construct a fitness function. 

Therefore, in this paper we propose a new approach in details for fitness function design in path-oriented ET. 
This approach adopts the idea of “dividing and conquering”, and alleviates the confusion between the static and the 
dynamic information by using the dynamic one only. In fact the empirical studies show that with a specific target 
path, fitness function constructed with our approach is powerful enough to guide ET generating test cases 
efficiently. 
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3   Fitness Function Design for Path-Oriented ET 

Unlike the previous three approaches, we adopt the basic idea of dividing and conquering from 
condition-oriented approaches and construct individual fitness function for each target path. Actually the cost of 
constructing fitness functions for all the target paths in our approach is much lower than the one for all the 
branching conditions in condition-oriented approaches. Because the conditions in a program usually have various 
forms, constructing fitness function for each special condition needs a particular algorithm. Thus it could make this 
task labor-consuming and hard to be automated. Differently our approach for path-oriented testing does not need the 
particular algorithm for each individual path. It constructs the fitness functions for all the target paths with a general 
form, which takes the test case and the target path as parameters. Thus, it can be conducted simply and 
automatically without much cost. 

In our approach, we use the distance between a test case and the target to represent the fitness values of the test 
case. The key issue to evaluate the distance is to determine the similarity between the execution track of the 
associated test case and the target path. Suppose the target path is a statement sequence like this: target=〈p ,p ,…, 
p 〉

0 1

n−1 , in which pi (0≤i≤n−1) denotes the statement or branching condition to be executed. And the execution track of 
a test case is also a statement sequence like this: track=〈t0,t1,…,tm−1〉, in which ti (0≤i≤m−1) stands for the covered 
statement or condition. The formula for evaluating the distance between a test case and the target is defined as 
follows: 
 Distance(test,target)=Length(target)−Similarity(track,target) (1) 
in which, Length returns the amount of the statements in target path. In our approach it returns n. And Similarity is 
used to evaluate the similarity between the corresponding execution track and the target path. Its return value is 
within the range [0,n]. The higher value it returns, the more similar is the track to the target path. If the track is 
different from the target path completely, Similarity returns 0. Conversely, if the track matches the target path 
exactly, Similarity returns n. 

Consequently the function of Distance also has its return value within [0,n]. It will return a low value when the 
similarity between the execution track and the target path is high, which means the associated test case is close to 
the test target. If its return value is 0, the associated test case is the desired global optimum and can satisfy the 
target. Oppositely if its return value is n, the corresponding test case cannot satisfy the target at all. 

In Eq.(1) the function of Distance is minimized during the optimization and can only provide a linear 
discrimination among a population of test cases. To normalize this function and provide a higher level of 
differentiation, the result of Distance can act as the input of other algebra formulas, such as reciprocal function, 
Gaussian function, Hamming distance function, and so on Ref.[11], whose output is the final fitness value. 

As presented above, the key issue of our approach is constructing the function of Similarity, that is, designing 
algorithms to evaluate the similarity between the execution track of the associated test case and the target path. 
Therefore in the next section we will provoke three different similarity evaluation algorithms. Each algorithm 
accepts both track and target as parameters, and can serve as the function of Similarity. 

4   Algorithms for Similarity Function 

In this section, we propose three algorithms for function Similarity design in order to evaluate the similarity 
between the execution track of the associated test case and the target path. 

4.1   Similarity function based on path matching 

Algorithm MUNS (matching using uninterrupted node sequence) is a method based on path matching in 
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similarity evaluation between the execution track and the target path. It requires covering the statements in the 
target path one by one without any interruption. Generally MUNS tries to find a sub-string of the execution track 
that can exactly match the longest prefix of the target path, and then returns the length of the prefix as the similarity 
between the track and the target path. Thus only if part of the execution track could match the whole target path 
exactly, the similarity between them will be evaluated as the maximum n, and the associated test case will be chosen 
as the desired solution by ET. The detail of this algorithm is shown in Algorithm 1. 

Algorithm 1. MUNS. 
input       track:  the execution track 〈t0,t1,…,tm−1〉, 

target:  the target path 〈p ,p ,…,p 〉;0 1 n−1

output      similarity: the similarity between track and target. 
declare     length:  the length of the current prefix of target 
             t:  the element of track 
             p:  the element of target 
begin 

similarity:=0; 
//first search, if not found, return null 
tmatch:=find the first ti=p0 in track from t0; 
while (tmatch<>null) 

length:=1; 
t:=next of tmatch; 
p:=p1; 
//evaluate the length of the prefix of target 
//that exactly matches the sub-string of track 
while (t<>null and p<>null) 

if (t=p) then length:=length+1; 
else break; 

t:=next of t in track; 
p:=next of p in target; 

end while 
if (length>similarity) then similarity:=length; 
//continue searching 
tmatch:=find ti=p0 in track from the next element of tmatch; 

end while 
return similarity; 

end MUNS 

It can be learned from Algorithm 1 that the outer loop searches for the sub-strings of track that is started with 
p0. And for each sub-string like this, the inner loop finds the prefix of target that could exactly match it and 
evaluates the length of the current prefix. At the exit of the outer loop, algorithm returns the maximal length as the 
similarity between track and target. For instance, target=(0,1,2), track =(0,4,0,1,2), track =(1,0,0,1,5), then MUNS 
(track ,target)=3, MUNS(track ,target)=2. 

1 2

1 2

Suppose the length of track is m, the length of target is n. From Algorithm 1 we can conclude that in the worst 
case, the outer loop that searches for ti matches p0 in track will iterate m times. And the inner loop that investigates 
the elements in both track and target will iterate min(m,n) times at most. Therefore, the algorithm MUNS takes 
O(m×min(m,n)) time in the worst case. 

4.2   Similarity function based on node sequence matching 

In some cases, the test target of path-oriented testing is not a consecutive execution trace. Instead, it could be a 
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sequence of several discrete statements, which just indicates the order of them to be executed[13]. Thus, we only 
need to generate test cases, which can orderly cover each statement in the target sequence. For example, in the 
definition-use pair coverage criterion, the target path could be a sequence of definition and using statements. The 
execution track is required to cover the prescribed definition statement first, and after the execution of several other 
statements then cover the prescribed using statement. 

Aiming at the testing requirement above, we propose the algorithm MDNS (matching using discrete node 
sequence) to evaluate the similarity between the execution track and the target statement sequence. Different from 
MUNS, MDNS only requires covering the statements in the target sequence orderly without regarding the interruption. 

In MDNS, we need to find the longest prefix of the target sequence, in which the statements could be orderly 
covered by a sub-string of the execution track. MDNS returns the length of the prefix as the similarity of the 
execution track and the target sequence. Thus only if part of the execution track could orderly cover all the 
statements of the target sequence, the similarity between them will be evaluated as the maximum n, and the 
associated test case will be chosen as the desired solution by ET. Algorithm 2 shows the process of MDNS. 

Algorithm 2. MDNS. 
input      track:  the execution track 〈t0,t1,…,tm−1〉, 

target:  the target sequence 〈p0,p1,…,pn−1〉; 
output     similarity: the similarity between track and target. 
declare    length:  the length of the current prefix of target 
            t:   the element of track 
            p:   the element of target 
begin 

similarity:=0; 
//first search, if not found, return null 
tmatch:=find the first ti=p0 in track from t0; 
while (tmatch<>null) 

length:=1; 
t:=tmatch; 
p:=p1; 
//evaluate the length of the prefix of target 
//that can be orderly covered by the sub-string of track 
while (t<>null and p<>null) 

t:=find p in track from t; 
if (t<>null) then length:=length+1; 

else break; 
p:=next of p in target; 

end while 
if (length>similarity) then similarity:=length; 
//continue searching 
tmatch:=find ti=p0 in track from the next element of tmatch; 

end while 
return similarity; 

end MDNS 

It can be learned from Algorithm 2 that the outer loop searches for the sub-strings of track that is started with 
p0. And for each sub-string like this, the inner loop finds a prefix of target that can be covered orderly by the 
sub-string and evaluates the length of the current prefix. In the end, the algorithm will return the maximal length as 
the similarity between track and target. For instance, target=(0,1,2), track1=(4,0,3,1,0,5), track2=(0,0,1,1,2,5), then 
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MDNS(track1,target)=2, MDNS(track2,target)=3. 
Suppose the length of track is m, and the length of target is n, similar to the situation in MUNS, in MDNS the 

outer loop iterates for m times at most, and the inner one iterates for min(m,n) times at most. Thus, the algorithm 
MDNS also takes O(m×min(m,n)) time in the worst case. 

4.3   Similarity function based on scatter graph method 

In this section, we propose an algorithm MSG (matching using scatter graph), which is based on scatter graph 
technique, to evaluate the similarity between the execution track and the target. Scatter graph was originally applied 
to detect the DNA sequence in biology research[28]. Recently it has been introduced into software engineering for 
the identification of similar codes, and has acquired competent effect[29]. 

In MSG, the statements of the execution track are required to match the statements of target path exactly at the 
same position. We define the level between two strings as the amount of the matched positions, where the two 
strings have the same elements. Generally, MSG looks for pairs of strings, among which each pair consists of a 
sub-string of execution track and a sub-string of target path, which match each other at the same position. Thus the 
level for one pair of sub-strings means the amount of the matched position between the two sub-strings. MSG 
returns the highest level among all the pairs of sub-strings as the similarity between the execution track and the 
target path. Thus only if part of the execution track could match the target path exactly at each position, the 
similarity between them will be evaluated as the maximum n, and the associated test case will be chosen as the 
desired solution by ET. Algorithm 3 illustrates the corresponding process of algorithm MSG. 

Algorithm 3. MSG. 
input      track:  the execution track 〈t0,t1,…,tm−1〉, 

target:  the target path 〈p0,p1,…,pn−1〉; 
output    similarity:  the similarity between track and target. 
declare    graph:  the scatter graph 

level:  the level between two strings 
            t:   the element of track 
            p:   the element of target 
begin 

similarity:=0; 
garph:=initialize a scatter graph with track and target; 
//evaluate along the track axis 
t:=t0; 
while (t<>null) 

level:=evaluate level between 〈p0,…,pn−1〉 and 〈t,…,tm−1〉 
if (level>similarity) then similarity:=level; 
t:=next of t in track; 

end while 
//evaluate along the target axis 
p:=p0; 
while (p<>null) 

level:=evaluate level between 〈p,…,pn−1〉 and 〈t0,…,tm−1〉 
if (level>similarity) then similarity:=level; 
p:=next of p in target; 

end while 
return similarity; 

end MGS 
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From Algorithm 3 we can see that MSG first initializes a scatter graph with track and target. Then it traverses 
the whole graph following the diagonal direction, evaluating the level for each pair of sub-stings, and finally returns 

the maximal level as the similarity between track and target. 
In MSG, initializing a scatter graph with track and target means to build a 

two-dimensional matrix in computer storage, in which the x-axis is assigned 
with ti in track, while the y-axis is built with pi in target. If the signs of a point 
in two coordinates are identical, we can mark a solid dot on this point and 
assign value of 1 to it. For instance, target=(0,1,5,7,8,9), track=(1,0,0,5,7,1,9), 
the corresponding scatter graph is shown in Fig.1. 

Besides evaluating the level between two sub-strings, sp=〈pstart,…,pend〉 and 
st=〈tstart,…,tend〉, means to count the number of solid points along the direction of 

diagonal from point (tstart,pstart), until either sub-string first exceeds its ending point. The corresponding process of function 
EvaluateLevel is shown in Algorithm 4. 

For example, for the scatter graph shown in Fig.1, MSG first evaluates the level following the diagonal 
direction along track axis, and gets the highest level of 4. After that, MSG repeats the process along target axis, and 
gets the highest level of 1. Since 4 is the maximum in this case, the similarity is finally returned as 4. 

Algorithm 4. Function EvaluateLevel. 
input       graph:  the initialized scatter graph, 
             sp:  the current sub-string of target, 〈pstart,…,pend〉, 
             st:  the current sub-string of track, 〈tstart,…,tend〉; 
output      level:  the level between sp and st. 
declare       t:  the element of st 
             p:  the element of sp 
begin 

t:=tstart; 
p:=pstart; 
level:=0; 
while (t<>null and p<>null) 

if (graph(p,t)=1) then level:=level+1; 
t:=the next of t in st; 
p:=the next of p in sp; 

end while 
return level; 

end EvaluateLevel 

Suppose the length of track is m, the length of target is n, and MSG first builds the scatter graph and takes 
O(m×n) time, then it traverses the scatter graph to evaluate the similarity, which also takes O(m×n) time. Thus the 
algorithm MSG takes O(m×n) time altogether. 

track/pi 

9
8
7
5
1
0

1  0  0  5  7  1  9  track/ti

Fig.1  Scatter graph

5   Case Study 

5.1   Basic experiment settings 

In our empirical study, we use three indexes to evaluate the performance of ET, which are Ph, HAG and TTC. 
Due to the randomicity of ET, the result of one single experiment cannot represent the performance of ET. Thus we 
repeat the same experiment independently for many times, and investigate the frequency of the successful 
experiments. Suppose the total number of experiments is T0, the size of population is Psize, and the maximal 
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generation of iteration in one experiment is IMax, the three indexes are defined as follows: 
• Hit Percent (Ph): the hit percent of ET. Ph=Th/T0, in which Th stands for the number of successful 

experiments that have generated the desired test cases for target paths. If T0 is large enough, Ph could 
indicate the probability of success in one experiment approximately. This index is an essential one to 
evaluate the performance of ET. The higher Ph is, the more effective ET is. 

• Hit Average Generation (HAG): the average generations of ET to obtain the desired test cases, in 
which H  means the generation of ET to acquire the desired test cases in the ith successful experiment. 
This index reflects the convergence speed of the evolution. The lower HAG is, the faster ET is.

i

 

1
/

hT

i h
i

HAG H T
=

= ∑ . 

• Total Test Cases (TTC): the approximate average total number of test cases generated in one 
experiment. 

TTC=Psize×[Ph×HAG+(1−Ph)×IMax]. 
The lower it is, the lighter ET is. 
To evaluate the three indexes of ET, we investigate six typical programs as the testing objectives, which are 

shown in Table 1. It can be discovered that the objective programs are either unit functions with loop or branching 
structures or integrated systems. The main reason for choosing these objective programs is due to their variety in 
structures, which facilitates us to choose either short and simple or deep and complex paths as test targets, hence 
caters to the requirements of our experimental study. 

Table 1  Testing objectives 
Programs Input Program type Description 

PushDown A[⋅], first, last Unit function with loop 
and branching structures Order array A[⋅] within [first,last] using heap sorting. 

BinarySearch A[⋅], l, target Unit function with loop 
and branching structures Using binary search to find target in A[⋅] whose length is l. 

SumM A[⋅], first, last Unit function with loop 
and branching structures 

Analyze A[⋅] within [first,last] to find a consecutive segment, in which 
the sum of elements is M. 

NextDay month, day, year Integrated system with 
multi-branch structures Calculate the next day of the input date with month, day and year. 

LineCircle x1, y1, x2, y2, 
r, cx, cy 

Integrated system with 
multi-branch structures 

Judge the position relationship between line, which is decided by 
(x1,y1) and (x2,y2), and circle, whose center is (cx,cy) and radius is r. 

CDPlayer A[⋅], first, last Integrated FSM system with
multiple state transitions 

A finite state machine used to control the CD-player. 
The responsive events are stored in array A[⋅] from first to last. 

Additionally, in order to conduct ET for the six testing objective, we need to set up the evolutionary test case 
generator with several parameters. Certainly we construct the fitness function following our approach described 
with formula (1) in Section 3, which we adopt the three different similarity evaluation algorithms in Section 4 to 
implement. 

Moreover, we determine the strategy for each step of ET. Generally in ET, there are always varieties of 
strategies in each step and their combinations form different configurations, which may lead to different performances. In our 
experiments we select eight common used configurations based on our previous research[30], which are illustrated in Table 2. 

In Table 2, we investigate three steps of ET including coding, selection and survival, and for each step we 
choose two usual strategies. The feature of each configuration, which is not the key issue in this paper, has been 
studied and discussed in details with the elementary experiments in our previous work[30,31]. 
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Table 2  Different configurations of ET 

Config Coding Selection Survival Config Coding Selection Survival 
C1 Gray random unrepeatable C5 binary random unrepeatable 
C2 Gray random fitness C6 binary random fitness 
C3 Gray roulette-wheel unrepeatable C7 binary roulette-wheel unrepeatable 
C4 Gray roulette-wheel fitness C8 binary roulette-wheel fitness 

Finally in our experiments we utilize some benchmark parameters acquired from the previous experiments, 
which are also not the key point of this paper[30,31]. These parameters include: the mutation possibility Pm (assigned 
with 0.1), the crossover possibility Pc (assigned with 0.5), the survivability Ps (assigned with 0.5), T0 (assigned with 
300), and IMax (assigned with 100). Besides, for Psize we choose different values for different programs. Generally a 
large population could have a strong ability in searching for the optima and may lead to a high Ph for ET, while a 
small population may deteriorate the performance of ET. However, if the Ph in all the programs are close to 1 or 0, it 
will be very hard to compare these results. Therefore in our primary experiments, we found the feasible size for 
each program to make sure that we could get the comparable results. We assigned Psize with 32 for CDPlayer, 16 for 
LineCircle, 64 for NextDay, and 8 for the other three programs. What is more, for the non-heuristic techniques, the 
generated test suit is as large as the population in ET. 

5.2   Study on the validity and effectiveness 

It is known that random testing, as a representation of non-heuristic testing techniques, is widely used in many 
testing domains. It has several advantages. First, it can be easily applied in many kinds of program structures, 
without the limitations of loops, arrays, sub-procedure calling, etc. Second, it can be fully automated. However, it 
also has serious problems. Due to the lack of guidance, the performance of random testing for path-oriented testing 
could be deteriorated with the increasing complexity of target paths. 

On the other hand, path-oriented ET with our fitness function design approach can also be applied in many 
kinds of program structures without any limitations of loop, array, etc, meanwhile it can achieve the same level of 
automation as random testing. Moreover, it can conquer the disadvantages of random testing, that is, with a guided 
search; it could be more efficient for the complicated target paths. 

Therefore in this experiment, we will mainly aim at covering the deep and complex paths, in order to present 
the superiority of our approach. We choose one complex path for each objective program, which is shown in Table3. 

Table 3  Target paths for experiment 1 

Programs Test target 
PushDown Cover a specified path with multiple iterations of loop. 
BinarySearch Cover a specified path with multiple iterations of loop. 
SumM Cover a specified path with multiple iterations of loop. 
NextDay Cover a program path, which can result in the February 28th of a special leap year (the year can be divided by 400). 
LineCircle Cover a program path, which can result in the tangent between circle and line. 
CDPlayer Cover a specified state transition sequence. 

The empirical study in this section evaluates the corresponding value of Ph, HAG and TTC for path-oriented ET 
using three similarity evaluation algorithms MUNS, MDNS, MSG and random testing to compare their 
performances. In the experiment, we have acquired a great deal of results. Due to the space, we present part of them 
from three aspects: 

1. For each program, we compare the performance of path-oriented ET using the three algorithms with random 
testing. From analyzing the empirical results we can educe the following two conclusions: 
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(i) Path-Oriented ET using the three similarity evaluation algorithms acquires satisfied performance and 
presents a strong superiority over random testing in most testing objectives. The performance comparisons among 
the three algorithms and random testing of NextDay and CDPlayer are illustrated in Figs.2 and 3 respectively. 
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Fig.2  Empirical results in NextDay 
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(a) Ph comparison                                      (b) TTC comparison 

Fig.3  Empirical results in CDPlayer 

It is obvious in Fig.2(a) and Fig.3(a) that for all of the eight configurations ET with the three algorithms can 
obtain satisfied Ph, while random testing can only obtain the Ph of 0. Thus there is no need to illustrate the HAG 
comparison since its value of random testing must be 0. Besides, even though the three algorithms can gain high Ph, 
the cost of generation is not very high, which can be seen from Fig.2(b) and Fig.3(b). 

Actually in NextDay, ET with all the three algorithms can obtain the Ph around 0.8 in one half of the 
configurations, and around 0.5 in another half. In the best case, which uses C1 and MSG, ET can obtain the Ph of 
0.963 with the generation of 2 454 test cases in total, while random testing generates 6 400 test cases without 
finding any desired ones. Similarly in CDPlayer, ET using C4 and MSG can acquire the Ph of 0.987 with the 
generation of 1 053 test cases in all, while random testing cannot even generate one desired test case with the TTC 
of 3 200. 

Apart from NextDay and CDPlayer, we have also acquired similar results in PushDown, SumM and 
LineCircle. Figures 4, 5 and 6 illustrate part of the performance comparison between ET with three similarity 
evaluation algorithms and random testing in the three object programs. For each program, we pick up the best and 
the worst situation of ET respectively, in order to display its advantage over random testing. 

It can be discovered from Fig.4, Fig.5 and Fig.6 that though different algorithms have different performances, 
ET can show its superiority in most situations. It is obvious that for the three programs, ET with MUNS can always 
obtain much higher Ph, lower HAG and TTC than random testing even in the worst case. Besides, though MDNS 
and MSG do not perform as well as MUNS, they also show the advantage in most cases: MDNS does not perform 
well in SumM and LineCircle, but it can obtain the best performance in PushDown. And MSG can acquire satisfied 
performance in SumM and LineCircle, even though it performs a little worse than random testing in the worst 
situation of PushDown. 
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Fig.4  Parts of the empirical results in PushDown 
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Fig.5  Parts of the empirical results in SumM 
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Fig.6  Parts of the empirical results in LineCircle 

Actually in PushDown, ET using C8 and MDNS algorithm can obtain the Ph of 0.913 with the generation of 
only 273 test cases in all, while random testing can only attain the Ph of 0.297, with the cost of generating 659 test 
cases. Besides using C8 and MUNS, ET can obtain the Ph of 0.987 with 279 test cases in SumM, and the Ph of 0.527 
with 1 187 test cases in LineCircle. However in both of the programs, the Ph of random testing are lower than 0.1. 

The reason for the superiority of ET with our fitness function design approach can be concluded from the 
characteristics of the search domain determined by the object programs and target paths. Usually when the search 
domain is quite complex and huge and the desired test cases are quite sparse in the domain, ET with our fitness 
function design approach could be more competent than the non-heuristic search, such as random search, for the test 
case generation. Since our approach can provide a strong guidance for seeking the desired test cases, while random 
testing can only conduct a blind search without any direction. 

Apart from resulting in the complex search domain and causing low efficiency for the non-heuristic techniques, 
long target paths usually involve the occurrence of loops, arrays, sub-procedure calling, etc., which are roadblocks 
for most commonly used path-oriented testing techniques, such as static analyzing, dynamic methods, etc. But from 
our experimental results, we can conclude that ET with our fitness function design approach can easily deal with 
these situations and also acquire satisfied performance. Additionally since our approach is an automatic technique, it 



 

 

 

谢晓园 等:面向路径覆盖的演化测试用例生成技术 3129 

 

can be much more effective and practical than the manual methods. In our studies, ET with our fitness function 
design approach can generate desired test cases within 1 second. However, for the same task it usually takes at least 
several minutes or more with manual methods, no matter how familiar the test engineer is with the program. 

(ii) Even though ET with our fitness function design approach has presented the superiority over random 
testing in most situations, it does not mean that random testing is useless in all the applications. Our empirical 
results show that in some situations, random testing can perform as well as our approach. Actually in the situations 
of simple search domain, large portion of desired test cases, etc., may utilize random testing instead of our 
approach. 

The object program, BinarySearch, is an example of this kind of situations and its empirical results are 
illustrated in Fig.7. It can be discovered that in this program, for all the eight configurations random testing has 
acquired a Ph as high as ET with MUNS and MSG, which are higher than 0.95. However, Figs.7(b) and (c) also 
illustrate that random testing has a higher HAG and TTC than ET with MUNS and MSG, which indicates that the 
search for the desired test cases in random testing is slower, thus it needs to generate more test cases in total than 
the search of ET. 
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Fig.7  Empirical results in BinarySearch 

In fact, it can be learned from Table 1 that in BinarySearch the target path involves several iterations of loop. 
To cover the target path only requires a partial-ordered relationship among the object element and several special 
elements in the array. Obviously there are many test cases satisfying this relationship within the input domain, 
which makes the search for optima fairly easy. For this kind of programs and target paths, we can use random 
testing instead of ET with our fitness function. Even though it may be a little slower and may generate more test 
cases in total to use random testing, it can obtain satisfied results and the application could be much lighter and 
simpler. 

2. It can be discovered from Fig.2 that in NextDay, with different configurations, ET using our fitness function design 
approach can obtain different performance. Actually there are similar results in the other five object programs. By comparing 
the performances of the eight configurations for each program we discover that some programs prefer the configurations with 
lower selection pressure, while others prefer the configurations with higher selection pressure[11,30,31]. 

In NextDay, for all the three algorithms, configurations of C1, C3, C5 and C7 obtain a high Ph and a low TTC. It can 
be learned from Table 2 that these four configurations all choose unrepeatable survival scheme, which provides low 
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selection pressure. 
Oppositely in PushDown, for all the three algorithms, configurations of C2, C4, C6 and C8 acquire a satisfied 

performance. And these four configurations all choose fitness survival scheme, which provides a high selection 
pressure for ET. Similarly in BinarySearch, for the algorithms of MDNS and MSG, configurations of C2, C4, C6 and 
C8 also perform better than the other four. And for MUNS, since all the configurations can obtain quite high Ph, 
there is no distinctness among them. 

Besides, in the other three programs, LineCircle, SumM, and CDPlayer, even though the best configurations 
are not consistent with the three algorithms, C4 and C8 are the common ones that can obtain a high Ph for all the 
three algorithms in these programs. It is known that C4 and C8 both use the roulette-wheel selection scheme and 
fitness survival scheme, which make them own the highest selection pressure among these eight configurations. 

The reason that different programs prefer different configurations could be concluded from the distribution of 
the global and local optima within the search domain. If there are a lot of local optima around the global optima 
within the search domain, it is advised to choose configurations with lower selection pressure, such as C1, C3, C5 
and C7, to avoid the prematurity. Conversely, it is advised to choose configurations with higher selection pressure, 
such as C2, C4, C6 and C8, to speed up the search for global optima without worrying about the prematurity. For 
example in PushDown, BinarySearch, SumM, CDPlayer and LineCircle, there are not many local optima in the 
search domain. Thus C2, C4, C6 and C8 can obtain good results. 

3. It is known from the discussion above that for different programs the three similarity evaluation algorithms 
obtain different results. Thus, we compare the performances of the three algorithms in each program. On the 

purpose of obtaining visible results, we choose C8 for PushDown, 
BinarySearch, LineCircle, SumM and CDPlayer, and C7 for 
NextDay. The comparison of Ph among the three algorithms in each 
object program is illustrated in Fig.8. 

It can be discovered from Fig.8 that algorithm MUNS always 
performs quite well in all the object programs. And in most programs 
it performs the best among the three algorithms. MSG can also 
provide satisfied Ph for most programs, but its performance is not as 
stable as MUNS. It can be seen that MSG performs worse than 
MUNS in PushDown and SumM. Besides, MDNS performs worse 

than the other two algorithms in most cases. It can be discovered that MDNS obtains similar performance to the 
other two algorithms in PushDown, BinarySearch and NextDay, and gains worse performance in SumM, CDPlayer 
and LineCircle. 
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Fig.8  Comparison of Ph of algorithms

Commonly the performance of the algorithm lies on the guidance it provides. From the description of the 
algorithms in Section 4, we can learn that both MUNS and MSG evaluate the similarity between the execution track 
and the whole target path. The only difference is that MUNS is concerned with matching the prefix of the target 
path, while MSG cares about locating at the right position of the target path. Thus these two algorithms can provide 
similar ability of guidance. 

Differently MDNS does not evaluate the similarity between the execution track and the whole target path. 
Instead, it investigates several discrete node segments of the target path. Thus it cannot provide as strong guidance 
as the other two algorithms. Actually the performance of MDNS depends on the instruction of the discrete node 
segments. If the discrete node segments provide enough information about the target path, MDNS may also perform 
well. In an extreme situation, when the missing nodes in the discrete node segments are all on a DD-path (path 
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chain), which are surely to be executed orderly, the performance of MDNS will be similar to the other two 
algorithms. What is important is that MDNS has its own application fields. It is especially suitable for inexactly 
defined test target, such as definition-use pair coverage, loop coverage and so on, in which the target may not be a 
whole program path. Instead it could be designated with only a few critical statements. 

5.3   Study on the limitation and the applicable scope 

The first experimental study reveals the advantages of our methods for the complex target paths. And it also 
mentioned that our approach can easily deal with some limitation of other commonly used path-oriented testing 
techniques. These techniques include two major approaches: the static analyzing, and the dynamic methods. 
Besides, according to Section 2 ET with PC-oriented fitness function is also a technique for path-oriented testing. 

Usually these techniques could be complex and expensive to apply and may have difficulty in dealing with 
arrays, loops and sub-procedure calling etc. 

First in static analyzing, for example the symbolic execution, the execution utilizes symbolic values as the 
program inputs, and then combines all the branch predications together with the path condition. The path condition 
can only contain input parameters as the independent variables. To generate test cases covering one specific path, 
symbolic execution just solves the corresponding path condition as solving a constraint system. However, since the 
inputs are not real values it might be very difficult to acquire such path condition when encountering the loops and 
the arrays[15,18]. Even though there are several methods aiming to solve this problem, and some researchers have 
developed testing tools on system level for symbolic execution[32,33], the complexity of using symbolic execution in 
those situations will still increase greatly. Besides, sometimes the path condition could be very complicated, then 
solving such constraint system is also a very expensive task[34]. 

As for dynamic methods, for example the relaxation methods, even though it uses the real values as the inputs, 
it still requires investigating all the branch predications, analyzing their dependency to the input variables, and then 
constructing the linear constraint system[13,15,17,18]. Since the relaxation methods are based on the idea of slicing, the 
features of loops, arrays and sub-procedure calling in a program could also increase the difficulty of their 
application. For another instance, Zhao has provoked a testing technique especially for string inputs. It constructs 
objective function with respect to the string predicate which does not meet a given path condition, and minimize the 
objective function by using a speedy descent search algorithm[35]. Due to the usage of branch condition, this method 
may also suffers from the above problem. Besides, since it uses the local search technique, its search may not as 
efficient as GA for complex path. 

While in the ET with PC-oriented fitness function, there are similar problems. As mentioned in Section 2, since 
constructing such fitness function requires the assistance of data-flow analysis to investigate the dependency among 
variables, the complexity and the cost of its application could increase due to the features of the loops, arrays, 
sub-procedure calling, etc. 

On the other hand, in path-oriented ET with our fitness function design approach, constructing and solving the 
path conditions are not required, thus they do not need the information of branch predication or the assistance of 
data-flow analysis. All the necessary information to build the fitness function is the node sequence of the target 
path. The whole testing process could be fully automated and uniform for any kinds of program paths, and will not 
be affected by the features of loops, arrays, sub-procedure calling, etc. For such targets, such as the target paths for 
PushDown, BinarySearch, SumM and CDPlayer in Table 3, our approach could be more practicable and economic, 
which can also be approved by the experimental results in Section 5.2. 

Nonetheless, it can be discovered that if the programs don’t contain the structures of loops, arrays or 
sub-procedure calling, that is, for a common branch program, the first three testing techniques can actually be 
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applied well. In this situation, to investigate the dependency among variables could be less complicated, which 
becomes relatively practicable. 

Therefore to compare the performances between ET with our fitness function design approach and the other 
path-oriented testing techniques above, and to illustrate their limitations and the applicable scopes respectively for 
common branch programs, we conduct the second experiment. However, since the our approach uses GA as a 
searching technique, that is, a global searching technique, to make it fair, we choose ET with PC-oriented fitness 
function as a representative of the other techniques above in the second experiment. 

In this experimental study, we use the two branch programs: LineCircle and NextDay as testing objectives. For 
each program we choose three different paths as testing targets. The length of the paths increases from the first one 
to the third one. Since the experimental results are quite similar between the two programs, due to the space, we will 
only present the results of LineCircle as an example. For LineCircle, we choose three paths as the targets, whose 
information is shown in Table 4. It can be seen that with the increase of the path length, the corresponding 
path-condition becomes more and more complex. 

Table 4  Target paths in LineCircle for experiment 2 
ID Description of test target Node track of target path Simplified path condition 

P1
Cover a program path, which can 
result in situation of “not_line” (start,1,end1) (x1=x2) & (y1=y2) 

P2
Cover a program path, which can 
result in situation of “through_center” (start,1,2,3,4,8,end2) (x1=x2) & (y1!=y2) & 

(abs(a*cx+b*cy+c)<0.001)) 

P3
Cover a program path, which can 
result in situation of “not_line” (start,1,2,3,5,6,8,9,10,11,end5) (x1!=x2) & (y1=y2) & (abs(a*cx+b*cy+c)>=0.001)) & 

(r−0.1<=abs(a*cx+b*cy+c)/sqrt(a*a+b*b)<=r+0.1) 

Aiming at these three paths, we use our approach and PC-oriented approach repetitively to build the fitness 
functions, conducting path-oriented ET. To implement our approach, we still use the three different similarity 
evaluation algorithms, MUNS, MDNS and MSG. The result of Ph is shown in Figs.9(a), (b) and (c). It can be 
discovered from Fig.9 that: 

1. When aiming at P1, the shortest path, our approach with all the three algorithms can only acquire very low 
Ph. The reason is that in this situation the path is too short to provide enough coverage information for our 
approach. Thus the fitness function cannot provide subtle distinction among the candidate solutions or a good 
guidance during the search. 

On the other hand, the PC-oriented approach performs very well in this situation. It can be discovered from 
Table 4 that for P1, the path condition is quite simple. In fact, since this short path only contains one branch 
structure, the path condition contains only one branch predication correspondingly. In this situation, the path 
coverage has actually already degenerated to branch coverage. Meanwhile, the PC-oriented approach is essentially 
equal to the condition-oriented approach for branch coverage. Many researches have shown that condition-oriented 
fitness function can be easily applied for the branch coverage and can acquire satisfied performance[26,36]. 

Therefore from Fig.9(a) we can conclude that for the extremely short paths with quite simple path conditions, it is 
better to use the PC-oriented approach to construct fitness function, instead of using our approach. Because in this case, 
the PC-oriented fitness function could provide more precise guidance. Besides, due to the simplicity of the path 
condition, the construction of such fitness function will not be much more complex than the condition-oriented 
approach for branch/node coverage. 

2. With the increasing length of the target paths, the performance of our approach improves, while the 
performance of PC-oriented approach deteriorates. 

When aiming at P2, the medium-length path, the performance of our approach with the three similarity 
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evaluation algorithms has been improved evidently compared to P1. Even though the performance of MDNS is not 
as good as the other two algorithms, some configurations using MUNS and MSG have achieved higher Ph than the 
PC-oriented approach. Moreover, when aiming at P3, the longest path, it can be discovered that for each 
configuration, our approach can achieve higher Ph than PC-oriented method, either using MUNS or MSG. 

The reason for this phenomenon is that with the increasing length of paths, the coverage information becomes 
more and more precise in guiding the search for our approach, while the path condition becomes more and more 
complex to build an effective fitness function for PC-oriented approach. Therefore, it can be concluded that for the 
long paths with quite complex path conditions, it is still better to use our approach instead of the PC-oriented 
approach to build fitness function for path-oriented ET. Because normally the longer the path is, the more branch 
predications it contains. In this situation, PC-oriented approach becomes too simple to provide a subtle way to 
combine all the branch predications together. Thus its effectiveness may decrease with the increasing of the length. 

Additionally since PC-oriented approach usually requires the assistance of data-flow analysis, the more 
complex the path condition is, the more expensive the data flow analysis could be. While for our approach, as 
mentioned above, the complexity of fitness function constructing will be stable and can be fully automated. 
Therefore, even Fig.9(b) and (c) show that PC-oriented approach can also achieve acceptable performance, it is less 
practicable than our approach due to the increasing complexity and cost of the fitness function construction. 
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Fig.9  Empirical results in LineCircle 

5.4   Empirical conclusions 

From the analysis above we can summarize the following empirical conclusions: 
1. For path-oriented testing with long and complex target paths, which contain loops, arrays, sub-procedure 

calling, etc., ET with our fitness function design approach can be successfully applied without the confusion 
between static and dynamic information, or being lack of guidance. 

2. Different objective programs prefer different configurations. For the programs with a lot of local optima around 
the global optima, such as NextDay, it is inclined to use configurations with lower selection pressure in order to avoid 
the prematurity. In our experiments, such configurations usually involve random selection and unrepeatable survival. 

Conversely, for the object programs without many local optima, such as PushDown, BinarySearch, SumM, 
CDPlayer and LineCircle, it is better to choose a configuration with higher selection pressure to speed up the 
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convergence. In this paper, configurations with roulette-wheel selection and fitness survival can provide high 
selection pressure. 

3. Among the three similarity evaluation algorithms, MUNS and MSG have better performances than MDNS in 
most cases. Because MUNS and MSG evaluate the similarity between the execution track and the whole target path, 
while MDNS investigates several discrete node segments of the target path. Thus MUNS and MSG can provide 
stronger guidance than MDNS. 

4. ET with our fitness function design approach is not the substitution of other path-oriented testing techniques. 
In some cases, other techniuques are still practical. 

For the target paths with loops, arrays, sub-procedure calling, etc, if the target is quite easy to cover, such as the 
target path in BinarySearch, non-heuristic automatic techniques like random testing can also be applied efficiently, 
which is much lighter and simpler. While for the very short paths without loops, arrays, sub-procedure calling, etc, 
static analyzing, dynamic methods, ET with PC-oriented fitness function, etc. may perform better than ET with our 
fitness function design approach, since the path is too short to provide enough coverage information for our methods. 

Actually ET with our fitness function design approach could be an important complementary technique of 
other commonly used techniques in path-oriented testing. Our approach is designed especially for the complex 
target paths, for which other techniques usually have trouble in generating the desired test cases. To achieve the full 
coverage based on the prescribed criterion we can first conduct other proper techniques in order to cover the simple 
and the short paths, and then apply ET with our fitness function design approach to cover the remains. In this way, the 
whole process of generation could become cheaper and more efficient. 

6   Conclusions 

Evolutionary Testing (ET) is an efficient technique of automatic testing and it has many kinds of applications. 
However, there are few researches on ET in the field of path-oriented testing, which is an important technique in 
structural testing. Thus, in this paper we provoke our approach to construct the fitness function for path-oriented ET 
based on the similarity evaluation between the execution track and the target path or node sequence. We provide 
three different algorithms for the similarity evaluation. 

The empirical studies reveal that with proper similarity algorithm and suitable configuration, ET with our 
fitness function design approach can obtain obvious superiority over other commonly used path-oriented testing 
techniques. However, it also has limitations. Experimental results show that our approach is more suitable for the 
long and complicated program paths, while for the very short or simple paths, other techniques may acquire better 
performance. Generally MUNS and MSG usually have better performance than MDNS. And if the program has a lot 
of local optima, the configurations with lower selection pressure are more suitable. Otherwise, the ones with higher 
selection pressure are recommended. 

Actually generating test cases for target paths means to search for the sub-domains determined by the paths 
within the whole input domain. Usually the input domain of a program can be quite large, multi-dimensional, 
discontinuous and non-linear. And the sub-domain of a certain path may distribute discontinuously and sparsely 
within the input domain, which makes the blind exhaustive search impractical[19,20]. In this situation, ET that can 
search for target intelligently and automatically becomes quite helpful. Generally the fitness function, which 
provides the guidance for the search, is quite important for ET and may influence its performance greatly. In our 
approach we have provided a proper guidance for ET by evaluating the similarity between the execution track and 
the target path. Under the guidance, ET could be quite beneficial especially for the long paths and the complex 
search domain, which are the roadblocks in the non-heuristic techniques and the manual techniques. Besides, since 
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our approach does not require constructing or solving the path condition, its whole testing process could be fully 
automated and uniform for any kinds of program paths. Thus it can easily deal with the features of loops, arrays, 
sub-procedure calling, etc. 

Additionally, with the multi-core CPUs being more and more popular the concurrent computation has become a 
new trend[37,38]. Since ET is quite suitable for the large-scale and concurrent search, we can anticipate that ET will 
have more widespread applications in the future. Since our approach is based on ET, we can also anticipate that it 
could be a promising technique for a more practical and efficient path-oriented testing. 
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