
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.19, No.8, August 2008, pp.1933−1946 http://www.jos.org.cn
DOI: 10.3724/SP.J.1001.2008.01933 Tel/Fax: +86-10-62562563
© 2008 by Journal of Software. All rights reserved.

用多层次聚类法完成的大规模关系图的可视化
∗

黄茂林+, NGUYEN Quang Vinh

(Faculty of Information Technology, University of Technology, Sydney, Australia)

Large Graph Visualization by Hierarchical Clustering

HUANG Mao-Lin+, NGUYEN Quang Vinh

(Faculty of Information Technology, University of Technology, Sydney, Australia)

+ Corresponding author: E-mail: maolin@it.uts.edu.au

Huang ML, Nguyen QV. Large graph visualization by hierarchical clustering. Journal of Software, 2008,19(8):
1933−1946. http://www.jos.org.cn/1000-9825/19/1933.htm

Abstract: This paper proposes a new technique for visualizing large graphs of several ten thousands of vertices
and edges. To achieve a graph abstraction, a hierarchical clustered graph is extracted from a general large graph
based on the community structures discovered in the graph. An enclosure geometrical partitioning algorithm is then
applied to achieving the space optimization. For graph drawing, it uses a combination of spring-embbeder and
circular drawing algorithms that archives the goal of optimization of display space and aesthetical niceness. The
paper also discusses an interaction mechanism accompanied with the layout solution. The interaction not only
allows users to navigate hierarchically through the entire clustered graph, but also provides a way to navigate
multiple clusters concurrently. Animation is also implemented to preserve user mental maps during the interaction.
Key words: graph drawing; information visualization; view navigation; interaction; clustered graph

摘 要: 提出了一种新的大规模图形可视化技术.它可显示含有几万个接点和边的大规模关系图.为了完成对图

形的抽象化,一个多层次的聚类图形从原始的大规模关系图中抽取了出来.这种抽取是建立在大规模关系图的内在

结构基础上来完成的.一种递规封入式的几何划分算法被应用来完成对几何空间的优化,在具体的制图技术上,使用

導了一种用力 向布局算法和环形制图法相结合的新方法,从而完成了对显示空间的优化和美学上的优化.同时也讨

论了相关的人机交互技术,所采用的人机交互算法不仅能让使用者从上到下层次式地浏览整个聚类图形,同时也能

提供多层次聚类图形的并行浏览.动画技术也同时被运用,以保护使用者的精神图不被打乱.
关键词: 图形绘制;信息可视化;场景游览;人机交互;聚类图形
中图法分类号: TP391 文献标识码: A

1 Introduction

Graph visualization has been widely used in human-computer interaction. A graph commonly includes a node
set and an edge set to represent entities and relationships between entities respectively. Graphs generated in

∗ Supported by the Australia Research Council under Discovery Research under Grant No.DP0665463
Received 2008-01-22; Accepted 2008-04-18

1934 Journal of Software 软件学报 Vol.19, No.8, August 2008

real-world applications could be very large with thousands or perhaps millions of nodes, such as citation and
collaboration networks and the World Wide Web (WWW). As the result of rapid increasing of the size in networks,
the large scale visualization has become one of the hottest topics in Information Visualization. The question about
how to comprehensively display large graphs on the screen becomes the key issue in graph visualization. However,
the display of large graphs can decrease significantly the performance of a visualization technique which normally
performs well on small or medium size of datasets. Large graph visualization usually suffers from poor running time
and the limitation of display space. In addition, the issue of “view-ability” and usability also arises because it will
be almost impossible to discern between nodes and edges when a dataset of thousands of items are displayed[1].

It seems that classical graph models with a simple node-link diagram tend to be inadequate for large scale
visualization with several thousands of items. The lack of formal hierarchical structures in real world applications
could limit the conveying and perception of the complicated information. Figure 1 shows an example of the graph
visualization of a WWW site which illustrates two typical major problems:

• Too many nodes (pages) to be displayed and the layout of such a large geometrical area could not be fitted
in one single screen

• The layout of the graph has inefficient utilization of display space with many unused areas in the display.

Fig.1 An example of a large graph visualization using the classic virtual-page technique

To address the first problem, a well established new graph model to accommodate with the visualization of
large graphs is required. We believe that one way to deal with the display of large graphs is to provide users with a
certain degree of Graph Abstract. That is to filter out some details of the graph drawing which is assumed at a time
the viewer is not interested, while the overall structure of the graph drawing is maintained for navigation.

Among several available graph visualization approaches, we believe that the use of clustered graph is a better
option for graph abstraction. Therefore, a good visualization system for very large graphs should be a combination
of three components including graph drawing, graph clustering and interaction[2,3]. Visualization of clustered graphs
such as the ones in Refs.[4,5] is one of an excellent approaches to deal with large graphs through the graph
abstraction. A clustered graph can be extracted from a general graphs by partitioning recursively the graph into a
hierarchy of sub- graphs, so that it simplifies the complex structure of the large graph for easy interpretation,
perception and navigation of large information spaces.

To solve the second problem mentioned above, we need to optimize layout algorithms to maximize the
utilization of display screen by allowing more nodes to be displayed. The research from Ware[6] shows that more
information can be displayed on very high-resolution and large screen, but it does not necessarily provide very

黄茂林 等:用多层次聚类法完成的大规模关系图的可视化 1935

much more information into the brain. This is because the conventional monitor covers only 5−10% of visual field
in the normal condition, but it uses as much as 50% of brain pixels[7]. The study also shows that the uniquely
stimulated brain pixels peak at the width of a normal monitor view, and it is effective (but not critical) to increase
the number of pixels for the normal desktop to reach the limit of the brain pixels. Therefore, investigation of
optimized visual abstraction (clustering) techniques that could provide viewers with more comprehensive views of
the large graphs becomes important.

2 Related Work

Large graphs visualization has recently received a lot of attention from researchers in both information
visualization and graph drawing communities. Although some newly available techniques such as techniques found
at[3,8−12], are quite capable of visualizing large graphs of thousands to hundred thousands of nodes and edges,
visualization of large graphs, is still one of the open topics in information visualization.

Harel and Koren[8] described a technique to draw a graph that used high-dimensional embedding and then
projected it onto a 2D plane. Although this technique is very fast and is capable of exhibiting graph in various
dimensions with some good navigational ability, it is more suitable for visualizing mesh-graphs rather than tree-like
graphs or clustered graphs. One of the good approaches for handling large graphs is to use multi-scale
visualization[11,13,14]. This approach typically applies a force-directed algorithm to draw large graphs using
multi-scale scheme in which they try to beautify the coarsest-scale representation. Techniques in this approach aim
to improve the processing speed while maintaining the graph niceness. A good visualization of large graphs can also
be archived by using multilevel techniques[9,15]. In short, these techniques improve the visual appearance of the
visualization by defining different levels for a structure so that they can present the graphs using an optimal
algorithm at each level.

Although the above techniques are quite capable of visualizing large graphs, the space-efficiency is not
considered in the visualization which could limit the amount of information to be visualized on the screen at a time.
Fekete, et al.[16]. presented a space-efficient visualization of graph using a modification of the well-known
Tree-Maps[17]. Technically, the authors used Tree-Maps to display the tree structure of graph and used explicit link
curves to present the other links. This technique was optimal in term of using display space and it is quite useful for
visualizing structures that the underlying trees have some meaning. However, it did not perform well in general
graphs and clustered graphs because the link curves might cause unnatural look of the graphs. Some preliminary
works have been carried out and from which two tree visualization techniques Space-Optimized Tree (or SO-
Tree)[20] and EncCon Tree[19] have been developed that can quickly display large trees with maximized utilization of
display space. However, these solutions are only suitable for trees (hierarchical structures).

This paper proposes a new technique for visualizing very large general graphs. Our proposed technique is very
similar to the framework of Tulip[3] which consists of three components: graph clustering, graph layout and
interaction. We first use a new clustering algorithm to partition the complete graph into abstract clusters for
achieving the view abstraction; that aims to reduce the visual complexity of the graph layout, and enhance the
comprehension and understanding of the graph.

The clustered graph is then visualized using a new space-efficient layout technique which is a combination of
different layout algorithms. This geometrical optimization of graph layout allows more data items (and clusters) to
be displayed within a limited screen resolution. Our visualization provides viewers with not only an abstract view of
the entire graph but also an interaction technique for the navigation of large graphs. The navigation method allows
users to browse hierarchically through the clustered graph and navigate across a number of selected clusters. All the

1936 Journal of Software 软件学报 Vol.19, No.8, August 2008

interactions are accommodated with animation to preserve user mental maps during the navigation.

3 The Architecture of the Visualization

Our model for visualizing large graphs includes several processes which are illustrated at Fig.2. There are two
major phases involved in this model including the clustering analysis and the user interface phases. The two phases
operate independently.

The clustering analysis phase is responsible for analyzing a
large graph and partitioning it into a clustered graph based on
discovered internal communities. In short, the clustering algorithm
recursively divides the graphs into smaller sub-graphs based on
the density of connection within and between subgroups. Although
this process does not require a very fast algorithm and it can
operate independently, the computational cost of clustering
algorithms should be controlled with running time of O(n2) or
better on a sparse graph to ensure its capability of handling
hundreds thousands of items within a few hours using a ordinary
personal computer. The clustering process also extracts attributed
properties for nodes, edges and relations between sub-graphs.

The user interface phase is responsible for the visualization
and navigation of the clustered graph, including layout
optimization, interactive viewing and display optimization. A
combination of different layout algorithms is employed which
aims to optimize the geometrical space and so that the large graph
can be drawn at a normal screen size.

During the navigation of clustered graphs, we allow users to
interactively adjust the views to reach an optimal representation of
the graph; from where they can obtain the best understanding of
the data and structures. This visualization is involved with real
time human-computer interaction. Therefore, very fast graph

layout and navigation algorithms is required for handling hundred thousands of items within minutes or seconds
using a personal computer with limited display space and computational power.

Fig.2 A architectural model for

visualizing large graphs

The final display is created through the view navigation and graphical properties. We use rich graphic
attributes to assist viewers to quickly identify the domain specific properties associated with data items. We next
describe briefly of the clustering and the technical detail of our visualization technique.

4 Graph Clustering

We use a graph clustering method which can quickly discover the community structure embedded in a large
graph and divide the graph into densely connected sub-graphs. The graph clustering algorithm partitions the graphs
into smaller sub-graphs based on the density of connection within and between subgroups. Although this process
does not require a very fast algorithm, the computational cost of clustering algorithms should be controlled with the
worst-case running time O(n2) or faster on a sparse graph to ensure its capability of handling hundreds thousands of
items within a few hours using a ordinary personal computer.

黄茂林 等:用多层次聚类法完成的大规模关系图的可视化 1937

Research in graph clustering for large datasets has recently received a lot of effort from researchers. However,
the discovery of fast and effective clustering algorithms for handling large graphs is still a big challenge. In fact, the
finding of an exact solution for graph clustering is still believed to be an NP-complete problem. Kernighan and
Lin[23] and Newman and Girvan[24] have presented their heuristic techniques that can produce quite good solutions
for graph clustering. However, their techniques are very slow with the worst–case running time O(m2n) or O(n3) on
sparse graphs. This makes it almost impossible to partition a graph with more than a few thousands of elements.
Newman[18] later proposed a new fast algorithm for detecting community structure in networks. This method runs in
worst-case time O((m+n)n) or O(n2) on a sparse graph. The algorithm is very fast and can handle graphs with
hundred thousands of elements. However, its clustering results are not very consistent, especially a poor balance
between clusters.

Although the quality or usefulness of an embedded graph drawing algorithm is highly dependent on its
application domain, aesthetics is still one of the most important quality factors in graph drawing or graph
visualization in which the readability of a graph is measured or justified. The aesthetical criteria for graph drawing
can be found from a book on Graph Drawing by Di Battista, et al.[25] and the revised version from Ware, et al.[26].
Among the aesthetical criteria, the even distribution of vertices and the maximization of display symmetry of a
graph structure are two important factors to ensure the quality of graph visualization. These criteria are closely
related to the quality of the balance of clusters produced by a clustering algorithm. In order words, we believe that a
good clustering algorithm should achieve the goals of balanced clustering in which in each level of the hierarchy the
size of the clusters should be about the same. This property helps associated graph drawing method to provide good
visualization in term of readability.

This paper used a graph clustering method[27] which can quickly discover the community structure embedded
in large graphs and divide the graph into densely connected sub-graphs. The proposed algorithm can not only run
fast in time O((m+n)n), but also achieve a consistent partitioning result in which a graph is divided into a set of
clusters of the similar size. Although our objective, i.e. keeping clusters balance, is similar to Duncan, et al.[28], this
clustering algorithm is more general rather than just by using a binary space partition (BSP) clustering.

The balance in size of clusters provides users with a clearer view of the clustered graph and thus it makes it
easier to visualize and navigate large graphs. Our balanced clustering technique creates a layout optimization at
both global and local levels of the display through the use of enclosure+connection layout technique. This allows
more visual items to be displayed within limited screen resolutions and with comprehensive views. The combination
between our clustering method and a space-efficient layout technique would enable the visualization of very large
general graphs with several thousands of elements. Figure 3 shows an example of a clustering output using the
balanced clustering algorithm on a large and highly connected graph.

(a) The original graph with high connections (b) The output clustered graph

Fig.3 An example of a clustering

1938 Journal of Software 软件学报 Vol.19, No.8, August 2008

5 Graph Visualization

We use a new space-efficient visualization technique similarly to EncCon[19] to optimize the geometrical space
for visualizing large clustered graphs with several thousands of nodes and edges. This technique consists of two
components, the space-efficient layout and the interactive navigation. The layout of clustered graph is generated by
using a combination of an extended fast enclosure partitioning algorithm, called Clenccon, and a number of
traditional graph drawing algorithms, including a spring-embedder algorithm[21], a circular drawing, and simple
layout algorithm, to archive the objectives of space-efficiency, aesthetical niceness and fast computation. Although
some existing techniques can use any layout algorithm at each clusters, such as using a spring-force algorithm[9,11],
in our belief, the choice of a space-efficient enclosure-partitioning algorithm at high levels will be more efficient
because it provides more space for displaying information at the limited display.

The Clenccon layout algorithm is only applied to those non-leaf sub-graphs in which the space utilization and
computational cost are crucial. In other cases, the other layout algorithms, including spring-embedder and circular
drawing, is applied to the calculation of the position for those leaf sub-graphs, which contain a small number of
nodes in which the space utilization issue becomes less important and, therefore, the aesthetic niceness and
flexibility issues need to be further considered. The use of a particular layout algorithm depends on the nature of the
leaf sub-graphs. Our system also displays a high-level node-link diagram to present the overall clustering structure
explicitly (see examples at Figs. 5 and 6).

Our Clenccon layout algorithm inherits essentially the advantage of space-filling techniques[17,19] that utilize
display space by using area division for the partitioning of sub-trees and nodes. Note that the issue of space
utilization becomes significantly important when visualizing large graphs with thousands or even hundred thousands
of nodes and edges because of the limitation of screen pixels. It is similar to EncCon[19] that uses a rectangular
division method for recursively positioning the nodes hierarchically. This property aims to provide users with a
more straightforward way to perceive the visualization and ensures the efficient use of display space. However, our
new technique is applied for clustered graphs rather than simple tree structures. Therefore, the algorithm takes the
connectivity property between sibling nodes into its partitioning process. We now describe the technical detail of
our layout and navigation algorithms.

5.1 Layout algorithm

Our layout algorithm is responsible for positioning of all nodes in a given clustered graph in a two-dimensional
geometrical space, including a vertex subset {v1,v2,…,vn} in V and a cluster subset {v′1,v′2,…,v′n} in V′. A clustered
graph C={G,T} is derived by a general graph G={V,E} and a cluster tree T whose leaves are in V. Each cluster v′i =
C′ is a sub clustered graph, contains a subset of V given by the leaves of the sub-tree T′ rooted at r′. The root r′ of
the sub-tree T′ is also called a super-node. The super nodes are not displayed in our visualization but they are used
for partitioning process of calculating the local region for sub clustered graph. For the partitioning of clustered
graph C, We define a virtual tree consisting of a set of super-nodes for area division. We define a super-node r(v′i)
for each cluster v′i. Further description of the clustered graph can be found at[5].

The layout algorithm is a combination of two algorithms: 1) Clenccon - a fast area division algorithm and 2)
graph drawing algorithms, including a spring-embedder algorithm, a circular drawing and a simple algorithm to lay
out a very small number of nodes. Each cluster v′i is bounded by a rectangular local region R(v′i) centered at
super-node r(v′i) and the drawing of the corresponding sub-clustered-graph G(v′i) is restricted to be inside the
geometrical area of R(v′i). Therefore, the local region R(v′i) of cluster v′i is the sum of the rectangular areas assigned
to its children. The position of the super-node r(v′i) of v′i is at the centre of the rectangle defined by R(v′i). The

黄茂林 等:用多层次聚类法完成的大规模关系图的可视化 1939

i

position of leaf nodes is defined by either the spring embedder, the circular drawing or the simple layout
algorithms.

We first assign the entire rectangular display area as the local region to the clustered graph C. We then
recursively partition the local regions for every sub-clusters until all the clusters are reached.

We assign a weight w(v′) to each vertex v’ for the calculation of the local region R(v′) of the vertex. Although
the weight of each vertex can be associated with its property, all the leaf vertices in our experiments have the same
weight. Suppose that the rectangular local region R(v′) for cluster v is drawn, we then need to calculate the local
regions {R(v′l+1),R(v′l+2),…,R(v′l+k)} for its sub-clusters {v′l+1,v′l+2,…,v′l+k}. The partitioning ensures that the area of
each rectangle R(v′l+i) is proportional to the weight w(v′l+i) of the cluster v′l+i. The calculation of w(v′) of a cluster v′
is done recursively from leaves of the cluster tree to the root of the cluster tree. The calculation is done by the
following formula:

1
() ()

k

o l
i

w v w S w v +
=

= + ∑ ,

where wo is the internal weight of cluster v′. Although the internal weight of a cluster can be defined by the cluster’s
attributed property, we define the internal weight of all clusters to be 1 for all experiments. S is a constant (0<S<1),
and w(v′l+i) is the weight assigned to the ith child of cluster v′. The constant S determines the size difference of local
regions of all clusters based on the number of descendants of those vertices.

The process of recursive partitioning R(v′) into sub-regions {R(v′l+1),R(v′l+2),…,R(v′l+k)} for all its children
clusters {v′l+1,v′l+2, …,v′l+k} is illustrated as the procedure below:

procedure partitioning (Node N)
{
 if all child-nodes of N are leaf-nodes then
 {
 lay out the child-nodes using a graph algorithm;
 scale the layout to fit with rectangular local region;
 }
 else
 {
 lay out the child-nodes using Clenccon algorithm;
 for each non-leaf child-node of N
 {
 partitioning(child-node);
 }
 }
}

procedure Clenccon-layout (Node [] Nodes)
{
 group linked-nodes into subgroups;
 sort the subgroups based on connection and size;
 lay out subgroups using EncCon algorithm;

1940 Journal of Software 软件学报 Vol.19, No.8, August 2008

 for each subgroup
 {
 lay out nodes in subgroup using EncCon algorithm;
 }
}

procedure childnode-layout (Node [] Nodes)
{
 if number of child-nodes < K1 then
 {
 lay out the child-nodes using simple algorithm;
 }
 else if number of child-nodes > K1 and
 no. edges / no. child-nodes > K2 then
 {
 lay out the child-nodes using circular drawing;
 }
 else
 {
 lay out the child-nodes using Spring algorithm;
 }
}
where K1=6 indicates the number of nodes that is suitable for each algorithm. If there are just a few number of
nodes, i.e. less than 10 nodes, a simple node location algorithm can perform well. K2=5 indicates the ratio of the
number of edges over the number of nodes. Because the force directed algorithms do not usually perform well for a
graph whose the number of edges is much larger than number of nodes, we use the circular drawing in this situation.

The detail description of the area partitioning EncCon can be found at[19]. Although there are several improved
force-directed layout algorithm, the traditional Spring Embedder[21] layout algorithm is chosen in our
implementation. This is because the algorithm is simple, easy to implement, flexible and perform well in general for
a small number of nodes in which a more complicated algorithm is not necessary. The circular drawing is a simple
technique but is very effective to show the pattern of relationship for a graph whose the number of edges is much
larger than number of nodes. Technically, we place all nodes equally on a circle where relational nodes are located
close together so that the pattern of connections can be display more clearly (see Figs.5 and 6).

Figure 4(a) shows an example of partitioning and drawing a small clustered graph using our algorithm. We can
see that the algorithm uses the Clenccon algorithm to layout three cluster nodes and their inter-relationships to
ensure the efficient utilization of space and uses the spring-embedder algorithm to draw the sub-graphs within each
cluster to achieve the aesthetic niceness and flexibility. Note that the inter-relationships among clusters here are
represented by using abstract links. Figure 4(b) shows the same example of the partitioning, but the inter-
relationships among clusters are represented by using the original structure of relationships. Figure 5 to Figure 7
illustrate the visualizations of our layout algorithm on various very large datasets. These pictures show clearly the
structure of clustered graphs, in which sub-graphs are efficiently partitioned and drawn inside their local regions.
All of these pictures use abstract links to represent the inter-relational structures among clusters.

黄茂林 等:用多层次聚类法完成的大规模关系图的可视化 1941

(a) Use the abstract links among clusters (b) Use the original structure of relationships

Fig.4 An example of partitioning and drawing a small clustered graph using our algorithm

Fig.5 An example of clustering on a large citation dataset with over 2 000 vertices
and 4 200 edges of the social network papers

5.2 Navigational views

There is no pure visualization technique that could assist data retrieval without providing users with an
associate navigation mechanism in graphic user interface design. In our user interface component, during the
navigation we enable users to interactively adjust the views to reach an optimized representation of the graph; from
which users can obtain the best understanding of the data and its relational structures they are interesting in.

1942 Journal of Software 软件学报 Vol.19, No.8, August 2008

Fig.6 An example of clustering on a protein dataset with very strong relations produced by our algorithm

Fig.7 An example of clustering on a protein dataset with our algorithm cluster a protein network

with over 15 000 nodes and 40 000 edges

In our prototype, we use a multiple-views technique[22], including a main view and context views, to achieve the
focus+context view navigation of large clustered graphs. The main view shows as much detail of information as

黄茂林 等:用多层次聚类法完成的大规模关系图的可视化 1943

possible allowing users to efficiently perform their interaction and visual analysis on this area. The context views,
which are displayed in the small areas at the left-hand side, are only responsible for displaying a several levels of
the contextual information (or the history of navigation) during the navigation. Therefore, a large amount of the
detail in these context views is filtered and they remain only the main structures and important landmarks in an
abstract manner for guiding the navigation. These simplified structures could preserve user’s mental map of where
they are, where they come from, and where they have been during the navigation.

The navigational views allow the exploration of data hierarchically as well as across multiple selected clusters
to quickly focus on the interest parts of data. Therefore, users can semantically zoom-in one or many areas of
interest or sub-clusters while retaining simplified context views. It effectively uses both focus and context views to
enable the interactive investigation of very large data. We provide three views to assist viewers to obtain the best
understanding of the dataset and its relational structure they are currently exploring. These views are: 1) a full
context view, 2) a current context views and 3) a main view (see Figs.8 and 9).

Full context view is displayed as a small panel located at the top-left side of the visualization. This view
displays the entire context of a large clustered graph in high-level abstraction with little details. This enables users
to always maintain an overall view of the information. The full-context view only shows three levels of the clustered
graph from the root in a simplified display. This is because too much information displaying at a small area would
create the overcrowded and distraction to users. The view updates automatically according to changes occurred in
the database. It highlights the context of the current sub-graph the user is interacting, so that users can always
identify the where they are and where they have been in a large information space. For example, in Figure 8 we can
easily identify the current-context view which is on the top-left region of the full-context view and the main-view
which is the right sub-graph inside the top-left region of the full-context view.

Fig.8 A clustered visualization of a very large protein dataset with three views: 1) a full-context,

2) a current-context view and 3) a main view

1944 Journal of Software 软件学报 Vol.19, No.8, August 2008

Fig.9 A navigational view of a selected sub-graph of the same data set as Fig.8 produced by our visualization

Current context view is displayed as a small panel locating under the full-context view at the left-hand side.
This view displays the immediate context or the up-level view of the main view. Similar to the full-context view,
this view displays up to three levels of clustered graph from the root in an abstraction manner. The current-context
panel also updates automatically and highlights a focused sub-graph which to be viewed in the main view in details.
This enables users to easily identify their focused region at the current context (see Fig.9).

Main view is displayed in a large area of the visualization. It displays the detail of a focused sub-graph. It
displays the structure of the clustered graph in an enclosure manner with color brightness. This view also shows the
connectivity strength between clusters using the width of edges. Furthermore, the size of nodes in the main-view is
automatically rescale based on the number of visible nodes.

5.3 Final display

Some graphical attributes are employed to in final display of clustered graphs to assist viewers to quickly
identify the domain specific properties of data and the hierarchical structure of the clustered graph. Colors are
employed to assist viewers to quickly identify the hierarchical structure of the clustered graph. In our prototype, the
local regions of nodes at different levels are painted with a same color but at different brightness. This drawing
property aims to provide a pleased view while retaining the clarity between sub-graphs. Although the use of
brightness of colors for background can theoretically apply to several levels of hierarchies, we also apply this
drawing property to first four hierarchical levels to avoid the confusion with too many colors.

Width or thickness of the edge is employed to represents the weight of the edge (or the number of connections
between two nodes). For example, in Fig.4(b), there are 3 links between the left cluster and bottom-right cluster.
However, Fig.4(a) displays only one thick abstract link between these clusters. We can see that edges among leaf
nodes are drawn with light-green color and edges among non-leaf nodes (or between two clusters) are drawn with
light-gray color. Furthermore, to avoid the overlapping due to the over-thickness of edges, the thickness of an edge

黄茂林 等:用多层次聚类法完成的大规模关系图的可视化 1945

is limited. Therefore, if the weight of an edge between two clusters is greater than a limited number in our
implementation, the edge is drawn at its limited maximum-width with darker boundary.

Although theoretically the area partitioning algorithm can optimize display space of the entire graph layout, a
small portion of display space is reserved as gaps among clusters for showing abstract links between clusters and
these abstract links indicate the connectivity strength between clusters.

6 Conclusions

We have presented a new visualization technique that could handle the visualization of very large graphs with
up to tens thousands or even hundred thousands of elements on an ordinary Personal Computer. Our method
includes two independent steps: clustering and visualization. The clustering step aims to reduce the visual
complexity and enhance the comprehension of large graph layouts through the use of visual abstraction. We first
discover an optimized community structure in a graph and divide it into densely connected clusters. We then use
three levels of visual abstraction: 1) the full context view, 2) the current context view and 3) the main view, to
display the large graph. The visualization uses a new space-efficient layout and navigation technique that can
visualize effectively the large clustered graphs with several thousands of elements on a limited display space. We
use a multiple view technique to archive the focus+context view navigation. The interaction Animation is also
employed to preserve the user mental maps during the interaction.

References:
[1] Herman I, Melancon G, Marshall MS. Graph visualization in information visualization: A survey. IEEE Trans. on Visualization

and Computer Graphics, 2000,(6):24−44.

[2] Marshall S. Methods and tools for the visualization and navigation of graphs [Ph.D. Thesis]. Bordeaux: University Bordeaux I,

2001.

[3] Auber D. Tulip: a huge graph visualization framework. In: Mutzel P, Junger M, eds. Graph Drawing Software, Mathematics and

Visualization. Springer-Verlag, 2003, 105−126.

[4] Eades P, Feng Q. Multilevel visualization of clustered graphs. In: North SC, ed. Graph Drawing (GD’96). California: Springer,

1996. 101−112.

[5] Feng Q. Algorithms for drawing clustered graphs [Ph.D. Thesis]. Newcastle: University of Newcastle, 1997.

[6] Ware C. Information Visualization: Perception for Design. San Francisco: Morgan Kaufmann Publishers, 2004.

[7] Wilkins AJ. Visual Stress. Oxford: Oxford University Press, 1995.

[8] Harel D, Koren Y. Graph drawing by high-dimensional embedding. Journal of Graph Algorithms and Applications, 2004,8(2):

195−214.

[9] Walshaw C. A multilevel algorithm for force-directed graph drawing. Mathematics Research Report 00/IM/60, University of

Greenwich, 2000.

[10] Abello J, van Ham F, Krishnan N. ASK-GraphView: A large scale graph visualization system. IEEE Trans. on Visualization and

Computer Graphics, 2006,12(5):669−676.

[11] Harel D, Koren Y. A fast multi-scale method for drawing large graphs. In: Marks J, ed. Graph Drawing. Colonial Williamsburg:

Springer-Verlag, 2000. 183−196.

[12] Hachul S, Junger M. An experimental comparison of fast algorithms for drawing general large graphs. In: Healy P, Nikolov NS, ed.

Graph Drawing. Limerick: Springer-Verlag, 2005. 235−250.

[13] Auber D, Chiricota Y, Jourdan F, Malancon G. Multiscale visualization of small world networks. In: IEEE Symp. on Information

Visualization. Seattle: IEEE Computer Society, 2003. 75−81.

[14] Auber D, Jourdan F. Interactive refinement of multi-scale network clusterings. In: Int’l Conf. on Information Visualization.

London: IEEE, 2005. 703−709.

1946 Journal of Software 软件学报 Vol.19, No.8, August 2008

[15] Archambault D, Munzner T, Auber D. TopoLayout: Multi-Level graph layout by topological features. IEEE Trans. on

Visualization and Computer Graphics, 2007,13(2):305−317.

[16] Fekete JD, Wang D, Dang N, Aris A, Plaisant C. Overlaying graph links on treemaps. In: IEEE Symp. on Information

Visualization –Symp. Poster Compendium. Seattle: IEEE Computer Society, 2003. 82−83.

[17] Johnson B, Shneiderman B. Tree-Maps: A space-filling approach to the visualization of hierarchical information structures. In:

Kaufman AE, ed. 1991 IEEE Visualization. IEEE Computer Society, 1991. 284−291.

[18] Newman MEJ. Fast algorithm for detecting community structure in networks. Physical Review E, 2004,69:066133.

[19] Nguyen QV, Huang ML. EncCon: An approach to constructing interactive visualization of large hierarchical data. Information

Visualization Journal, 2005,4(1):1−21.

[20] Nguyen QV, Huang ML. Space-Optimized tree: A connection+enclosure approach for the visualization of large hierarchies.

Information Visualization Journal, 2003,2(1):3−15.

[21] Eades P. A heuristic for graph drawing. Congressus Numerantium, 1984,42:149−160.

[22] Robert JC. On encouraging multiple views for visualisation. In: Int’l Conf. on Information Visualization. London: IEEE, 1998.

8−14.

[23] Kernighan G, Lin S. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 1970,29(2):

291−307.

[24] Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004,69:026113.

[25] di Battista G, Eades P, Tamassia R, Tollis IG. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[26] Ware C, Purchase H, Colpoys L, McGill M. Cognitive measurements of graph aesthetics. Information Visualization Journal, 2002,

1(2):103−110.

[27] Huang ML, Nguyen QV. A fast algorithm for balanced graph clustering. In: Proc. of the Int’l Conf. on Information Visualization.

Zürich: IEEE, 2007. 46−52.

[28] Duncan CA, Goodrich MT, Kobourov SG. Balanced aspect ratio trees and their use for drawing large graphs. Journal of Graph

Algorithms and Applications, 2000,4(3):19−46.

HUANG Mao-Lin is a senior lecturer and
doctoral supervisor at the Faculty of
Information Technology, University of
Technology, Sydney, Australia. His research
areas are graph drawing and information
visualization.

NGUYEN Quang Vinh is a Post-Doctoral
Fellow at the Faculty of Information
Technology, University of Technology,
Sydney, Australia. His current research
interests include information visualization.

	1 Introduction
	2 Related Work
	3 The Architecture of the Visualization
	4 Graph Clustering
	5 Graph Visualization
	5.1 Layout algorithm
	5.2 Navigational views
	5.3 Final display

	6 Conclusions

