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Abstract:  In this paper, the concept of dual models of a propositional linear temporal logic formula is defined: A 
formula f has dual models if it has two models (namely two ω-sequences of states) such that the assignments to 
atomic propositions at each position of them are dual. Then for various propositional linear temporal logics, the 
complexity of the problem deciding whether a formula f has dual models (denoted by DM) and the problem of 
determination of dual models in a Kripke-structure for a formula f (denoted by KDM) are investigated. It is shown 
that DM and KDM are NP-complete for the logic with F (“Future”) operator, and they are PSPACE-complete for 
the logic with F, X (“Next”) operators, the logic with U (“Until”) operator, the logic with U, S, X operators, and the 
logic with regular operators given by Wolper (known as extended temporal logic, ETL). 
Key words:  propositional linear temporal logic; dual model; computational complexity 

摘  要: 定义了一个命题线性时序逻辑的对偶模型的概念.一个公式 f的对偶模型是指 f的满足以下条件的两个模
型(即状态的ω序列):在每个位置上这两个模型对原子命题的赋值都是对偶的.然后,对于确定一个公式 f是否有对偶
模型的判定问题(记为 DM)和在一个 Kripke-结构中确定是否存在从两个给定状态出发的对偶模型满足给定公式 f
的判定问题(记为 KDM)的复杂性进行了研究.证明了以下结果:对于只含有 F(“Future”)算子的命题线性时序逻
辑,DM和KDM都是NP完全的;而对于以下命题线性时序逻辑,DM和KDM都是PSPACE完全的:含有F,X (“Next”)
算子的逻辑、含有 U(“Until”)算子的逻辑、含有 U,S,X算子的逻辑以及由Wolper给出的含有正规语言算子的逻辑
(一般称为扩展时序逻辑,简称 ETL). 
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1   Introduction 

Linear temporal logic was introduced in Ref.[1] as an appropriate formal system for reasoning about parallel 
programs and reactive systems. Linear temporal logic can be used to describe temporal properties of systems 
conveniently and briefly, such as the properties of deadlock free, liveness etc. 

The complexity of satisfiability (SAT) and model checking (MC) problems of propositional linear temporal 
logics has been investigated extensively in Ref.[2−6] motivated by their applications to the synthesis of concurrent 
systems from specifications[7,8] and the verification of concurrent and reactive systems[9,10]. While all these 
investigations are from a practical view, we, from a theoretical view, are wondering whether there are other natural 
decision problems for propositional linear temporal logics. With the theoretical view in mind, we examine various 
variants of SAT problem of Boolean logic (such as NAESAT, MAXSAT, MAJSAT, UNIQUESAT etc[11]) to see 
whether they can be generalized into propositional linear temporal logics. Finally we find out that among them, 
NAESAT can be generalized naturally and easily into propositional linear temporal logics, namely dual models 
problem (DM) defined in this paper. 

NAESAT is to decide whether a boolean formula in 3-CNF is not-all-equal satisfiable: A boolean formula f in 
3-CNF (conjunctive normal form such that each clause has exactly three literals) is not-all-equal satisfiable 
(NAESAT) if there is an assignment to atomic propositions such that each clause has at least one true literal and at 
least one false literal. The complexity of NAESAT is the same as SAT for boolean logic, namely NP-complete. 

It is easily shown that a 3-CNF boolean formula f is not-all-equal satisfiable iff f has two models whose 
assignments to atomic propositions are dual. Then naturally, we can generalize this concept of duality of 
assignments to atomic propositions to propositional linear temporal logics and define so called dual models 
problem. 

Dual models of a propositional linear temporal logic formula f are two models (namely two ω-sequences of 
states) of f such that the assignments to atomic propositions at each position of them are dual. Dual models problem 
(DM), as a variant of SAT for propositional linear temporal logic, is to decide whether a given formula f has dual 
models. Moreover, in view of model checking problem, we consider a similar problem, namely the problem of 
determination of dual models in a Kripke structure (KDM) defined as follows: KDM problem is to decide for a 
given formula f, a Kripke structure K and two states δ1, δ2 in K, whether there are two dual paths p, q starting from 
δ1, δ2 respectively such that they both satisfy f. 

In Ref.[2], the complexity of SAT and MC was investigated for various propositional linear temporal logics. It 
was shown that SAT and MC are NP-complete for the logic with F (“Future”) operator, and are PSPACE-complete 
for the logic with F, X (“Next”) operators, the logic with U (“Until”) operator, the logic with U, S, X operators, and 
the logic with regular operators given by Wolper (known as Extended Temporal Logic, ETL). On the basis of those 
results for SAT and MC in Ref.[2], we investigate the complexity of DM and KDM in this paper and show that the 
complexity of DM and KDM is the same as that of SAT and MC for various propositional linear temporal logics. 
Moreover, our techniques used in this paper are general enough to determine the complexity of DM and KDM 
problems for all propositional linear temporal logics that admit complete Boolean operators. Consequently once we 
have determined the complexity of SAT and MC problems for a propositional linear temporal logic, we know the 
complexity of DM and KDM problems as well. 

This paper is organized as follows. Section 2 defines the syntax and semantics of propositional linear temporal 
logic, and the related decision problems. In Section 3, we study some properties of the dual models. In Section 4, 
we investigate the complexity of DM and KDM problems. Finally in Section 5, we give some conclusions and 
remarks. 
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2   Notation and Definitions 

In this paper, we follow the notation and definitions of Ref.[2]. 

2.1   Syntax and semantics of propositional linear temporal logics 

A regular right linear grammar is a regular grammar in which all the production rules are of the form N→aM, 
N→a, where N, M are nonterminals in the grammar and a is a string of terminal symbols. 

Given a set of atomic propositions P, and a regular right linear grammar G with terminal symbols a1,…,an and 
nonterminal symbols N1,…,Nm, the syntax of extended temporal logic (denoted by ETL(G)) is defined as follows: 

f:=P|¬f1|f1∨f2|Xf1|f1Uf2| f1Sf2|Nj(f1,…,fn), where P∈P, 1≤j≤m. 
In addition, the following abbreviations are defined: 

f1∧f2≡¬(¬f1∨¬f2), f1→f2≡¬f1∨f2, Ff≡TrueUf, Gf≡¬F¬f. 
Let O1,…,Ok∈{X,F,G,U,S}, then L(O1,…,Ok) denotes the sublogic of ETL(G) restricted to these operators, for 

example L(F), L(F,X), L(U), L(U,X), L(U,S,X) and so on. We denote the logic containing F, X operators but 

with “¬” operators applied only to atomic propositions by ),(~ XFL . 
A structure S=(s,ξ), where s=(s0,s1,…), is an ω-sequence of states in which all the states are distinct and 

ξ:{s0,s1,…}→2P. Intuitively, ξ specifies which atomic propositions are true in each state. An interpretation is a pair 
(S,δ) where S is a structure as previously defined, and δ is a state in the sequence s. 

Semantics of ETL(G) are defined as follows: 

Let S=(s,ξ) be a structure and si be a state in s, then 
(S,si)|=P where P∈P, iff P∈ξ(si); 
(S,si)|=¬f1 iff not (S,si)|=f1; 
(S,si)|=f1∨f2 iff (S,si)|=f1 or (S,si)|=f2; 
(S,si)|=Xf1 iff (S,si+1)|=f1; 
(S,si)|=f1Uf2 iff there is a j≥i such that (S,sj)|=f2 and for all k with i≤k<j, (S,sk)|=f1; 
(S,si)|=f1Sf2 iff there is a j≤i such that (S,sj)|=f2 and for all k with j<k≤i, (S,sk)|=f1; 
(S,si)|=Nj(f1,…,fn) (1≤j≤m) iff there is a finite or infinite string  generated by G from N...

210 iii aaa j such that, for 

all k≥0,
kiki fsS =+ ),( . 

Example: Consider the grammar N1→a1a2N1. Let f1=P, f2=True, then (S,si)|=N1(f1,f2) iff the proposition P holds 
at all i+2k (k≥0) positions of S since the only string that N1 can generate is a1a2a1a2…, f1 must be satisfied by S at all 
positions starting from si where a1 occurs, namely all the positions of i+2k (k≥0). 

In the remainder of this paper, we always let G denote a regular right linear grammar with terminal symbols 
a1,…,an and nonterminal symbols N1,…,Nm. 

2.2   Problems of propositional linear temporal logics 

Satisfiability problem for linear temporal logic (SAT) 
Given a formula f∈L, where L is a sublogic of ETL(G), decide whether there is a structure S=(s,ξ) such that 

(S,s0)|=f. 
Kripke Structure 
A Kripke-structure K is a triple (N,R,η), where N is a finite set of states (also called nodes), R⊆N×N, and 

η:N→2P. A path p in K is an infinite sequence (p0,p1,…) where ∀i≥0,pi∈N, and (pi,pi+1)∈R. For a path p in a Kripke 
structure K, we let Sp denote the structure (s,ξ) where ∀i≥0, ξ(si)=η(pi). 
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Model checking Problem (MC) 
Given a Kripke-structure K=(N,R,η), a state δ∈N, and a formula f∈L, where L is a sublogic of ETL(G), decide 

whether there is a path p in K starting from δ such that fsS p
p =),( 0 . 

Remark: The existential definition of Model checking problem here is the dual of the usual universal definition 
of model checking in verification. All the complexity results can be translated between the two formulations via 
duality. 

Dual formulas 

Let f∈L, where L is a sublogic of ETL(G), the dual formula f of f is defined by the following rules: 

PP ¬= , PP =¬ ; 

11 ff ¬=¬  if f1 isn’t an atomic proposition; 

11 ff XX = ; 

2121     fOpffOpf = , where Op=∨, U, S respectively; 

),...,(),...,( 11 njnj ffNffN =  (1≤j≤m). 

It is easily seen that ff = . 
Dual structures 
Two structures S=(s,ξ) and T=(t,π) are called dual structures if for all i≥0, 
ξ(si)∩π(ti)=∅ and ξ(si)∪π(ti)=P. 

The dual structure of S=(s,ξ) is denoted by ),( ξsS = . 
Dual models 
Given a formula f∈L, where L is a sublogic of ETL(G), structures S=(s,ξ) and T=(t,π) are called dual models of 

f if (S,s0)|=f, (T,t0)|=f, and S, T are dual structures. 
Example. Let P={P1,P2}, f=P1UP2, S=(s,ξ) be a structure with ξ(s0)={P2}, ξ(si)={P1} (i≥1), and T=(t,π) be a 

structure with π(t0)={P1}, π(ti)={P2} (i≥1), then S and T are dual models of f. 
Dual paths in a Kripke-structure 
Given a Kripke-structure K=(N,R,η), two paths p and q are called dual paths if Sp and Sq are dual structures. 
Dual models problem (DM) 
Given a formula f∈L, where L is a sublogic of ETL(G), decide whether f has dual models. 
Determination of dual models in a Kripke-structure problem (KDM) 

Given a Kripke-structure K=(N,R,η), two states N∈δδ , , and a formula f∈L, where L is a sublogic of ETL(G), 

decide whether there are dual paths p, q in K starting from δ, δ  respectively such that fsS p
p =),( 0  and 

fsS q
q =),( 0 . 

Not-all-equal Satisfiability Problem for boolean formula[11] (NAESAT) 
Given a boolean formula g=C1∧C2∧…∧Cm in 3-CNF where 

321 iiii lllC ∨∨=  (1≤i≤m),  or ¬xji xl
k
= j (1≤k≤3) 

for some j such that 1≤j≤n, x1,…,xn are the variables appearing in g, decide whether there exists an assignment 
η:{x1,…,xn}→{true,false} such that under this assignment three literals of each clause are neither all true nor all 
false. 

It is evident that there exists an assignment η:{x1,…,xn}→{true,false} such that under this assignment three 
literals of each clause of g are neither all true nor all false iff there are two dual assignments η and η  (namely 

false)(true)( =⇔= ii xx ηη  for all 1≤i≤n) such that g is true both under η and under η . 
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3   Properties of Dual Models 

Theorem 3.1. Let f∈ETL(G), S=(s,ξ) be a structure, then (S,si)|=f iff fsS i =),( , where S is the dual structure 

of S, and f is the dual formula of f. 
Proof:  We prove the theorem by structural induction on f. 
f=P or f=¬P: the two cases are trivial. 
f=¬f1 where f1 isn’t an atomic proposition: 

(S,si)|=f iff not (S,si)|=f1 iff 

not 1),( fsS i =  (by induction hypothesis) iff 

1),( fsS i ¬=  iff 1), fsS i ¬=(  iff fsS i =),(  

f=f1∨f2: 
(S,si)|=f iff ((S,si)|=f1 or (S,si)|=f2) iff 

1),( fsS i =  or 2),( fsS i =  (by induction hypothesis) iff 

21),( ffsS i ∨=  iff 21), ffsS i ∨=(  iff fsS i =),( . 

f=Xf1: (S,si)|=f iff (S,si+1)|=f1 iff 11),( fsS i =+  (by induction hypothesis) iff 

1),( fsS i X=  iff 1), fsS i X=(  iff fsS i =),( . 

f=f1Uf2: (S,si)|=f iff ((S,sj)|=f2 for some j≥i, and for all k: i≤k<j, (S,sk)|=f1) iff 
( 2),( fsS j =  for some j≥i, and for all k: i≤k<j, 1),( fsS k = ) (by induction hypothesis) iff 

21   ),( ffsS i U=  iff fsS i =),(  

f=f1Sf2: similar to the case of f=f1Uf2. 
f=Nj(f1,…,fn) (1≤j≤m): (S,si)|=f iff  

(there exists a finite or infinite string , , ,… generated by G from N
0ka

1ka
2ka j such that, for all l≥0, 

lkli fsS =+ ),( ) iff 

(there exists a finite or infinite string , , ,… generated by G from N
0ka

1ka
2ka j such that, for all l≥0, 

lkli fsS =+ ),( ) (by induction hypothesis)) iff 

),...,(),( 1 nji ffNsS =  iff fsS i =),( . □ 

Corollary 3.2. Let f∈L, where L is a sublogic of ETL(G), then f is satisfiable iff ff ∨ has dual models. 
Proof: 
“Only if” part: Suppose that f is satisfiable. 

There exists a structure S=(s,ξ) such that (S,s0)|=f, then according to Theorem 3.1, fsS =),( 0 . Obviously, S 

and S  are dual models of ff ∨ . 

“If” part: Suppose that ff ∨  has dual models, then there are dual structures S=(s,ξ) and ),( ξsS =  such 

that ffsS ∨=),( 0  and ffsS ∨=),( 0 . Then ((S,s0)|=f or fsS =),( 0 ) and ( fsS =),( 0  or fsS =), 0( ). If (S,s0)|=f 

or fsS =),( 0 , then we are done. Otherwise, we have fsS =),( 0  and fsS =), 0( , then according to Theorem 3.1, 

fsS =),( 0  and (S,s0)|=f, f is satisfiable. □ 

Corollary 3.3. Let f∈L, where L is a sublogic of ETL(G), then f has dual models iff ff ∧  is satisfiable. 
Proof: 

“Only if” part: Suppose that f has dual models, then there exist dual structures S=(s,ξ) and ),( ξsS =  such 
that (S,s0)|=f and fsS =),( 0 . According to Theorem 3.1, fsS =),( 0 . Thus ffsS ∧=),( 0 , ff ∧  is satisfiable. 
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“If” part: Suppose that ff ∧  is satisfiable, then there exists a structure S=(s,ξ) such that ffsS ∧=),( 0 , 

namely (S,s0)|=f and fsS =),( 0 . According to Theorem 3.1, fsS =),( 0 , thus f has dual models. □  

4   Complexity of DM and KDM Problems 

4.1   Complexity of DM problem 

Theorem 4.1. The complexity of DM problem for propositional linear temporal logics is as follows: 

(i) DM is NP-complete for L(F) and ),(~ XFL ; 
(ii) DM is PSPACE-complete for L(F,X), L(U), L(U,S,X), ETL(G). 

Proof:  (i) At first we show that DM is NP-hard for L(F) and ),(~ XFL . 

From Ref.[2], we know that SAT problems for L(F) and ),(~ XFL  are NP-complete. Then if we can reduce 
SAT to DM for the two logics, we are done. As a matter of fact, according to Corollary 3.2, a formula f∈L(F) 
( ),(~ XFLf ∈  resp.) is satisfiable iff ff ∨ (which is in ),(~ XFL  if ),(~ XFL∈f ) has dual models, thus we have 

reduced SAT to DM for L(F) and ),(~ XFL , and the reduction is obviously a polynomial-time reduction. 
~Now we show that DM is in NP by reducing DM to SAT for L(F) and ),( XFL . 

From Corollary 3.3, a formula f∈L(F) ( ),(~ XFLf ∈  resp.) has dual models iff ff ∧ (which is in ),(~ XFL  

if ),(~ XFLf ∈ ) is satisfiable. Then we really have reduced DM to SAT for L(F) and ),(~ X
)

FL

,(

, and it is obvious 

that the reduction is a polynomial-time reduction. DM is in NP for L(F) and ~ XFL , and thus DM is 

NP-complete for L(F) and ),(~ XFL . 
(ii) The proof is similar to (i). In Ref.[2], we have known that SAT is PSPACE-complete for L(F,X), L(U), 

L(U,S,X), ETL(G), consequently, DM is PSPAC-complete for L(F,X), L(U), L(U,S,X), ETL(G) as well. □ 

4.2   Complexity of KDM problem 

Theorem 4.2. The complexity of KDM problem for propositional linear temporal logics is as follows: 

(i) KDM is NP-complete for L(F), ),(~ XFL ; 
(ii) KDM is PSPACE-complete for L(F,X), L(U), L(U,S,X), ETL(G). 
Theorem 4.2 is proved by the following two lemmas, namely Lemmas 4.3 and 4.4. 

Lemma 4.3. KDM is NP-hard for L(F), ),(~ XFL and PSPACE-hard for L(F,X), L(U), L(U,S,X), ETL(G). 

Proof:  We reduce MC to KDM to show that KDM is NP-hard for L(F), ),(~ XFL  and PSPACE-hard for 

L(F,X), L(U), L(U,S,X), ETL(G) since we know that MC is NP-complete for L(F), ),(~ XFL  and PSPACE- 
complete for L(F,X), L(U), L(U,S,X), ETL(G) in Ref.[2]. 

Let P be a set of atomic propositions, K=(N,R,η) be a Kripke-structure such that η(x)⊆P for all x∈N, δ∈N, f∈L 

with all atomic propositions in P (where L denotes any of L(F), ),(~ XFL , L(F,X), L(U), 
L(U,S,X), ETL(G)). Now we construct another Kripke-structure K′=(N′,R′,η′) and two 
states 1δ ′ , 2δ ′  in N′ and a formula f′∈L such that there is a path p in K starting from δ 

such that fs p =)0S p ,(  iff there are two dual paths p′ and p′  starting from 1δ ′ , 2δ ′  

respectively such that fsS p
p ′=′
′ ),( 0  and fsS p

p ′=′
′ ),( 0 . 

.

.

.
...

.

.

.
...

δ

x

(a)

(b)

x

δδ 

xx 

PI¬¬PI 
δ

PIPI 

Let P′=P∪{PI}. K′=(N′,R′,η′) is defined as follows (Fig.1): 
}|{ NxxNN ∈∪=′ ; 

}),(|),{( RyxyxRR ∈∪=′ ; 
η′(x)=η(x)∪{PI}, )()()( xxx ηηη −=′−′=′ PP . 

And let δδ =′1 , δδ =′2 , )()( PIfPIff ¬∧∨∧=′ . Fig.1 
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From the construction, it is not hard to see that there is a path p in Fig.1(a) starting from δ such that 

fsS p
p =),( 0  iff there is a dual path p  of p in Fig.1(b) starting from δ  such that fsS p

p =),( 0 . (*)  
Now we prove that there is a path p in K starting from δ such that fsS p

p =),( 0  iff there are two dual paths p′ 

and p′  starting from 1δ ′ , 2δ ′  respectively such that fsS p
p ′=′
′ ),( 0  and fsS p

p ′=′
′ ),( 0 . 

“Only if” part: Suppose that there is a path p in K starting from δ such that fsS p
p =),( 0 , then there exists a 

path p′ in Fig.1(a) starting from 1δ ′  (namely δ) such that fsS p
p =′
′ ),( 0 , and consequently, PIfsS p

p ∧=′
′ ),( 0 , 

)()(),( 0 PIfPIfsS p
p ¬∧∨∧=′
′ . According to (*), there is a dual path p′  of p′ in Fig.1(b) starting from 2δ ′  

(namely δ ) such that fsS p
p =′
′ ),( 0 , and consequently, PIfsS p

p ¬∧=′
′ ),( 0 , )()(),( 0 PIfPIfsS p

p ¬∧∨∧=′
′ . 

“If” part: Suppose that there are dual paths p′ and p′  starting from 1δ ′ , 2δ ′  respectively such that 

fsS p
p ′=′
′ ),( 0  and fsS p

p ′=′
′ ),( 0 , then PIfsS p

p ∧=′
′ ),( 0  and PIfsS p

p ¬∧=′
′ ),( 0 . Thus path p′ is in part Fig.1(a), 

consequently, there is a path p in K starting from δ such that fsS p
p =), 0( . 

Thus we have reduced MC to KDM in polynomial time and consequently, KDM is NP-hard for L(F), ),(~ XFL  
and is PSPACE-hard for L(F,X), L(U), L(U,S,X), ETL(G). □ 

Lemma 4.4. KDM is in NP for L(F), ),(~ XFL  and in PSPACE for L(F,X), L(U), L(U,S,X), ETL(G). 
~Proof:  We reduce KDM to MC for L(F), ),( XFL , L(F,X), L(U), L(U,S,X) and ETL(G). 

Let K=(N,R,η) be a Kripke-structure with η(x)⊆P for all x∈N, and δ1,δ2∈N; f∈L with all the atomic 

propositions in P (where L denotes any of L(F), ),(~ XFL , L(F,X), L(U), L(U,S,X) and ETL(G)). 

By dualizing the assignments of atomic propositions of nodes, we get a Kripke-structure ),,( ηRNK = , 

where, }{ NxxN ∈= , }),(),{( NyxyxR ∈=  and )()( xx ηη −= P . 

Construct another Kripke-structure K*=(N*,R*,η*) from K and K  as follows: 
)}()(,,),{( 212121

* ssNsNsssN ηη =∈∈= ; 

R* is defined by the rule: *
2121 )),(),,(( Rttss ∈  iff (s1,t1)∈R and Rts ∈),( 22 , where *

2121 ),(),,( Nttss ∈ ; 

)(),( 121
* sss ηη =  for *

21 ),( Nss ∈ . 

Now we prove that there are dual paths p, q in K starting from δ1, δ2 respectively such that  and 

 iff 

fsS p
p =|),( 0

fsS q
q =|),( 0

*
21 ), N∈δδ(  and there is a path p* in K* starting from ),( 21 δδ  such that ffp ∧=|)

*

0sS
p

,*( . 

“Only if” Part: Suppose that there are dual paths p, q in K starting from δ1, δ2 respectively such that 
fsS p

p =|),( 0  and . fsS q
q =|),( 0

It is easy to see that there is a path q  in K  starting from 2δ  such that )()( ii qq ηη −= P  for all i≥0 and 

fsS q
q =|),( 0  according to Theorem 3.1. 

Then for all i≥0, )()()( iii pqq ηηη =−= P , thus *),( Nqp ii ∈ . And for all i≥0, (pi,pi+1)∈R, Rqq ii ∈+ ),( 1 , thus 
*

11 )),(),,(( Rqpqp iiii ∈++ . Consequently, )...,)...(,)(,( 1100
*

ii qpqpqpp =  is a path in K* starting from ),( 21 δδ  such 

that  and fsS p
p

=|),(
*

* 0 fsS p
p

=|),(
*

* 0  since  and fsS p
p =|),( 0 fsS q

q =|),( 0 . 

“If” Part: Suppose that *
21 ),( N∈δδ  and there is a path )...,)...(,)(,( 1100

*
ii qpqpqpp =  in K* starting from 

),( 21 δδ  such that ffsS p
p

∧=|),(
*

* 0 , then for all i≥0, )()( ii qp ηη = , (pi,pi+1)∈R and Rqq ii ∈+ ),( 1 . Thus 

p=p0p1…pi… is a path in K starting from δ1 such that  and fsS p
p =|),( 0 ......10 iqqqq =  is a path in K  starting 

from 2δ  such that fsS q
q =|),( 0 , then there is a path q in K starting from δ2 such that )()()( iii pqq ηηη −=−= PP  

for all i≥0, and  according to Theorem 3.1. Now we get the desired dual paths p, q in K starting from fsS q
q =|),( 0
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δ1, δ2 respectively. 

Thus we have reduced KDM to MC and it is easy to show that the reduction is in polynomial time, then KDM 

is in NP for L(F), ),(~ XFL

,(

 and in PSPACE for L(F,X), L(U), L(U,S,X) and ETL(G) since MC is shown to be 

NP-complete for L(F), )~ XFL  and PSPACE-complete for L(F,X), L(U), L(U,S,X) and ETL(G) in Ref.[2]. □ 

5   Conclusions and Remarks 

In this paper, we first defined the concept of dual models of propositional linear temporal logic formulas, and 
then investigated the complexity of dual models problem (DM) and the problem of determination of dual models in 
a Kripke-structure (KDM) for various propositional linear temporal logics. We proved that the DM 

and KDM for L(F) and ),(~ XFL  are NP-complete, DM and KDM for L(F,X), L(U), L(U,X), L(U,S,X), ETL(G) are 
PSPACE-complete (Table 1). 

Table 1  The Complexity of DM and KDM 
Logic DM (dual models) KDM (determination of dual models in Kripke-structure) 
L(F) 

),(~ XFL NP-Complete NP-Complete 

L(F,X) 
L(U) 

L(U,X) 
L(U,S,X)
ETL(G) 

PSPACE-Complete PSPACE-Complete 

As a matter of fact, the reductions used in Theorem 4.1, Lemma 4.3 and Lemma 4.4 are general enough to 
determine the complexity of almost all propositional linear temporal logics defined so far only if the logic admits 
complete Boolean operators (since in the proof of Theorem 4.1, Lemma 4.2 and Lemma 4.3, “∧” and “∨” operators 
are necessary). For instance, in Ref.[5], the complexity of SAT and MC problems has been investigated 
systematically for various fragments of propositional linear temporal logics by bounding the number of atomic 
propositions and the number of nesting of temporal operators used in temporal logic formulas. By applying 
Theorem 4.1, Lemmas 4.3 and 4.4, we can conclude that DM and KDM problems have exactly the same complexity 
as SAT and MC problems for those logics defined in Ref.[5]. 

It is also interesting to investigate further whether there are other variants of SAT for Boolean logic that can be 
generalized to propositional linear temporal logics. 
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