
ISSN 1000-9825, CODEN RUXUEW E-mail: jos@iscas.ac.cn
Journal of Software, Vol.18, No.2, February 2007, pp.220−228 http://www.jos.org.cn
DOI: 10.1360/jos180220 Tel/Fax: +86-10-62562563
© 2007 by Journal of Software. All rights reserved.

系统级综合中结合资源分配的调度算法
∗

吴 强 1+, 边计年 2, 薛宏熙 2

1(湖南大学 计算机与通信学院,湖南 长沙 410082)
2(清华大学 计算机科学与技术系,北京 100084)

Scheduling with Resource Allocation for System-Level Synthesis

WU Qiang1+, BIAN Ji-Nian2, XUE Hong-Xi2

1(College of Computer and Communication, Hu’nan University, Changsha 410082, China)
2(Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China)

+ Corresponding author: Phn: +86-731-8821715, Fax: +86-731-8821715, E-mail: wuqiang@hnu.cn, http://lecs.hnu.cn

Wu Q, Bian JN, Xue HX. Scheduling with resource allocation for system-level synthesis. Journal of Software,
2007,18(2):220−228. http://www.jos.org.cn/1000-9825/18/220.htm

Abstract: In system-level synthesis, the allocation of resources is always decided by the designer or explored in
the outer-most loop. In this paper, a heuristic scheduling algorithm is proposed to find the resource allocation during
its running process. It determines the appropriate number of required resource instances based on the system
partition in scheduling, and generates the corresponding resource allocation, scheduling and assignment solution.
Such an algorithm can simplify the system-level design exploration to a procedure of system partitioning,
scheduling and evaluation, and can improve the exploration efficiency. Experimental results show the feasibility and
validity of the approach.
Key words: task scheduling; resource allocation; heuristic algorithm; design space exploration; system-level

synthesis

摘 要: 在系统级综合中,资源的分配通常由设计者指定,或在设计空间搜索的最外层循环中进行枚举探索.提出
了一种结合资源分配的启发式调度算法.它根据当前系统划分的结果,在调度过程中寻找合适的所需资源实例的数
目,从而确定系统的资源分配以及调度指派方案.应用该调度算法可使设计空间搜索过程简化为划分、调度和评估
三个步骤,省去了最外层的资源分配枚举循环,提高了搜索效率.实验结果验证了该算法的可行性和有效性.
关键词: 任务调度;资源分配;启发式算法;设计空间搜索;系统级综合
中图法分类号: TP301 文献标识码: A

1 Introduction

System design exploration is very important for system-level synthesis (SLS) of embedded systems, which

∗ Supported by the National Natural Science Foundation of China under Grant Nos.90207017, 60236020 (国家自然科学基金); the

National High-Tech Research and Development Plan of China under Grant No.2003AA115110 (国家高技术研究发展计划(863))
Received 2003-11-11; Accepted 2005-07-08

 吴强 等:系统级综合中结合资源分配的调度算法 221

attempts to find a best design solution according to the performance, power consumption and price goals[1,2].
Intensive research efforts have been made to address this issue. Many of them assume a fixed architecture or
provided by the designer. In Ref.[3], the author adopts a fixed architecture template that consists of one
microprocessor and several logic blocks. In Ref.[4], the system implementation architecture is interactively
improved with the SystemC based co-simulation tool manually. In SpecSyn, the architecture specification is
supplied by the designer, and is evaluated and refined in the succeeding steps[5]. Later in Ref.[5], Peng and Abdi
proposed algorithms to perform automatic model refinements for the architectures provided by the designer or
generation tools. In M Dziri’s full SoC design flow, VCC is employed to do the architectural exploration, which
needs manual interactions too[7].

Some research works consider the automated architecture generation, which concerns the partitioning, resource
allocation, and task scheduling and assignment problems. In Ref.[8], a method is presented to do flexible design
exploration with architectural allocation, where available types and maximal number of resources are
predetermined. In Véstias’ rapid prototyping platform, architectures are explored in outer loop of the co-synthesis
flow. Resource instances are inserted one-by-one until the maximal number of resource instance is reached[9]. In
SOS, Prakash and Parker proposed a mixed integer linear programming model to automatically synthesize an
architecture with arbitrary topology[10]. But their algorithm has difficulty to deal with large systems due to its high
time complexity. Wolf then used a heuristic approach to deal with this problem[11]. In his algorithm, resources are
allocated before partitioning, and then reduced after scheduling by eliminating resource instances without tasks
assigned on them. Xie and Wolf extended this work to deal with conditional task graphs in Ref.[12]. In most of
these efforts, scheduling algorithms always reside in the inner-most loop of the design exploration to provide
evaluation of the design solution. Partitioning algorithms are responsible to optimize the partition decision, which is
often placed outside the scheduling procedure. Resource allocation is often placed in the outer-most loop of the
design exploration.

In this paper, we propose a scheduling algorithm which produces allocation, schedule and assignment in one
run. With such a scheduling algorithm, the design exploration flow can be simplified to an iterative procedure of
partitioning, scheduling and evaluation, eliminating the outer-most architectural exploration loop. This, in our point
of view, will be helpful for a fast and efficient design exploration at system level. Such a design flow has been
introduced into a system-level synthesis framework for SoC design.

2 System Model

2.1 Functional model

We use the task graph[13] as the functional description of the system, which is a directed acyclic graph (DAG),
G=〈V,E〉, with node set V and edge set E. Each node vi represents a task of the system. Each edge 〈vi,vj〉 represents
the data dependency and communication between the two connected nodes.

Weights associated with nodes include task type tt and a deadline dl. Task type indicates what type of function
performed by this node. Deadline indicates that the task execution of the node must finish before the time
designated. Weight associated with edges is the communication data quantity cq, which indicates how much data
will be transferred when the communication of this edge is committed.

2.2 Architectural model

Resources that implement the system function are modeled as processing elements (PE) and communication
channels (CH). A PE is a component that executes the tasks, which can be a microprocessor with local memory and

 222 Journal of Software 软件学报 Vol.18, No.2, February 2007

internal bus, or an application specific integrated circuit (ASIC), or even an IP core. A CH is a component that
executes the communication between tasks, which can be a bus with access arbitrator, or a shared memory with
management circuit, or even an IP core implementing a particular communication protocol. The whole system can
be viewed as several PEs connected with a network of CHs as outlined in Fig.1.

In
tf.

In
tf.

CH networkPE PE

Intf.

PE

Intf.

PE

Fig.1 Architectural model

In system synthesis, nodes in task graph are mapped to PEs, while edges to CHs. A resource library is built to
hold the attributes of the available PEs and CHs.

The attributes of chip area, price and idle power consumption are associated with each PE type only, while the
execution time and power consumption are associated with task types. Different types of PE will have different
combination of these attribute values. Apparently, a type of PE can execute several types of tasks, and a type of task
can run on many candidate types of PEs.

For CHs, concerned attributes include the average chip area per link, average price per link, idle power
consumption, average transfer speed, and average transfer power consumption per bit in correspondence with
interface types. With the interface type, we mean the communication protocol and interface of a CH instance.
Obviously, transfer speed and power consumption are not necessarily the same under different interface types.
Furthermore, interface type of a CH instance should be compatible with those of PE instances it connects. Here, we
assume that the interface type of a PE is determined by its own type.

3 Scheduling Algorithm

3.1 Solution representation

As mentioned in the first section, the resource allocation will be produced during the scheduling process. It can
be represented with two sets of instances, one for PEs, the other for CHs. The label of each instance indicates the
resource type and the serial number of the instances of this type.

Allocation A::=〈PEA,CHA〉, where PEA::={pe00,…,peij,…,penm}, CHA::={ch00,…,chkl,…,chpq}.
We appoint CH type 0 as the internal link CH type, and always allocate one instance of this type with label

ch00. All the communications occurring between the nodes on the same PE instance will be placed on this instance.
The representation of the schedule and assignment is relatively simple and straightforward as follows.
Schedule S::=〈VS,ES〉, where VS::={〈vi,tsi,peij〉},VE::={〈et,tst,chkl〉}.
Other terms and expressions used are listed below: ASAP(ni) is the As Soon As Possible start time of the node

or edge ni; ALAP(ni) is the As Late As Possible start time of the node or edge ni; SLACK(ni) is defined as
SLACK(ni)=ALAP(ni)−ASAP(ni) which serves as a measure of priority of the node or edge ni.

 吴强 等:系统级综合中结合资源分配的调度算法 223

3.2 Main flow

We choose a list-scheduling scheme as the main flow of the algorithm as shown in Fig.2.

 re

Try scheduling
tasks

Resource
enough?

Allocate new
resource

Bind tasks on
resources

Finished? Return
sult

Reschedule
tasks

N Y

Violating
resource cost
constraints?

N

N

Return with no
feasible solution

Y
Y

Fig.2 Main flow

It initializes the ready list with the source nodes of the task graph, then repeats to select a task or
communication from the ready list, schedule and bind it, and insert all successors of the scheduled task or
communication into the ready list. When the ready list is empty, which means all tasks and communications have
been scheduled and bound, it finishes and returns the result to the design exploration procedure.

Note in the above procedure, the ASAP and ALAP start time are initialized at the beginning of the scheduling
process with the assumption of infinite resources. During the scheduling process, they will be updated to reflect
actual resource allocation and schedule of the nodes and edges.

3.3 Scheduling of nodes and edges

The scheduling of nodes and edges on the resource instances are alike, which is outlined below:
1. Let ni be the node or edge to be scheduled. Collect all the instances which have the same type as that of

ni’s partition into the set vinsts. If vinsts=∅, allocate a new instance of this type and insert it into vinsts;
2. For each instance inst in vinsts, check if there exists a vacant interval on it for ni. If so, inst→vains;
3. If vains=∅, allocate a new instance for ni. Reschedule the previously delayed nodes or edges to utilize

this new instance and determine the start time for ni on it;
4. Else vains is not empty, select an instance that can provide the earliest start time for ni from vains.

Schedule and assign ni with this start time as the ni on this instance;
5. If the start time of ni is greater than its ASAP start time, then record ni as a delayed node or edge.

In the above procedure, the algorithm will check all the current resource instances of ni’s type, say vinsts, to
find a available vacant interval fit for ni. Figure 3 gives the details of this check on an instance inst from vinsts. In
the figure, t1 and t2 are the ASAP(ni) and ALAP(ni) respectively. td is the run time of ni on this type of resource. A
possible vacant interval for ni is [tb,tf]. tb and tf are the end time of na and start time of nb respectively, which have
been already scheduled and assigned on the inst. The term “possible interval” means tb≤t2.

• If tb≤t1∧tf≥t1+td, the ni can be naturally fitted in the interval, as shown in Fig.3(a).

 224 Journal of Software 软件学报 Vol.18, No.2, February 2007

• If t1≤tb≤t2∧tf≥tb+td, the ni can be pushed and fitted in the interval [tb,tb+td], as shown in Fig.3(b).
• If tb≤t1∧≥tb+td≥tf, we can push nb to fit ni in the interval [t1,t1+td], satisfying that pushing nb will not

cause nb violate its deadline, as shown in Fig.3(c).
• If t1≤tb≤t2∧≥tb+td≥tf, this can be regarded as the combination of the above two cases. We can push ni and

nb to fit ni in the interval [tb,tb+td], satisfying that pushing nb will not cause nb violate its deadline. For
other cases, there is no vacant interval fit for ni on inst.

ni

na nb nina nb

ni

na nb nina nb

t1tb t2 tf tstb te tf

t1tb t2 tf tstb tf

ni

na nb nina nb

t1 tb t2 tf te tftb, ts

(a) Naturally fitting

(b) Postpone ni to fit

(c) Postpone nb to fit

inst inst

instinst

instinst

t1

t1 t2

t2

t1 t2

ft′te, ’te,

Fig.3 Fit ni in vacant interval on inst

3.4 Rescheduling of delayed nodes and edges

After the check of the available instances, all the instances that can accommodate ni will be found out and
stored in vains with the corresponding start time. But cases may happen that no instances can provide ni a vacant
interval. In such cases, a new instance is allocated for ni. Rescheduling of the previously scheduled nodes and edges
on other instances of the same resource type is performed to make use of the newly allocated instance. Intuitively,
only those nodes or edges that are delayed in the previous scheduling are worthy of considering, since rescheduling
un-delayed nodes or edges will not make them start earlier or occupy less resource. Rescheduling is described in
below.

1. Let newinst be the newly allocated instance for ni. Schedule ni on newinst at its ASAP start time;
2. Find all the delayed nodes or edges that can be rescheduled to the newinst, store them in the set resched;
3. Select the node or edge nk with the minimal slack in resched, and try to schedule it on newinst. During

this process, postponing operation may also be performed to get nk fit in the vacant intervals on newinst;
4. If nk can be rescheduled earlier on newinst, move it to newinst. Update its ASAP start time, as well as

those of its successors;
5. Delete nk from resched. If resched=∅, stop, else goto step 3.

Note that the postponed operation performed in the rescheduling is a little different from that in the original
scheduling process. In rescheduling, the postponed operation should not postpone any edges or nodes even behind

 吴强 等:系统级综合中结合资源分配的调度算法 225

their originally scheduled start time. In this sense, the postponed rules are tighter for rescheduling than for the
original scheduling.

In the worst case, rescheduling will cause the check on all the previously scheduled tasks and communications,
which costs at most O(n+m) time. Combined with the O(n+m) time of the list-scheduling scheme of the main
algorithm flow, the total time complexity in the worst case will be O((n+m)2). Here n is the number of the nodes,
and m is the number of edges of the task graph.

4 Experimental Results

4.1 Feasibility

We implement the scheduling algorithm in C++ and take some tests on a v880 machine running Sun Solaris. 8
types of PE and 4 types of CH are generated by TGFF as the resource library. Then we apply the scheduling
algorithm with the partitioning algorithm on a task graph example generated by TGFF shown in Fig.4. The screen
shots of the results outputted by the scheduling algorithm at 3 steps of the design exploration procedure are shown
in Fig.5. In the figure, white boxes are PE or CH instances, while the grey bars on them are nodes or edges assigned
on these instances. Grey lines are used to indicate relations of nodes and edges. For example, node 0 connects node
1 with an edge, namely 0. Then, a line is drawn from the bar t0_0 to the bar a0_0, and a line is from bar a0_0 to bar
t0_1.

d=850 d=850

7

8 9

5 6

3

4

21

0

TASK_GRAPH 0
 Period=850
 In/out degree limits=5/5

Fig.4 A task graph example

Sub-Diagram Fig.5(a) is the result of the initial randomly-generated partition. Sub-Diagram Fig.5(b)
corresponds to an intermediate partition during the whole optimization process. Sub-Diagram Fig.5(c) is the result
corresponding to the final partition solution. It can be seen that the result for the final partition allocates 3 PE
instances with type 6, 0 and 1 respectively, as well as only 1 CH instance of type 2. Communications other than
those scheduled on the only CH instance are all executed on the internal link. This can be viewed as an architecture
consisting of two processors with a dedicated functional component connected with a system bus.

We also take experiments on other task graph examples and the resultant PE and CH numbers are listed in
Table 1. Note that the internal link CH is not counted in the CH number. Apparently, the scheduling algorithm can
produce a reasonable result under the given partition.

 226

 2007

Journal of Software 软件学报 Vol.18, No.2, February

PE Inst 0 of type 7:

PE Inst 1 of type 6:

PE Inst 2 of type 0:

PE Inst 3 of type 2:

PE Inst 4 of type 2:

PE Inst 5 of type 5:

CH Inst 0 of type 0:

CH Inst 1 of type 1:

CH Inst 2 of type 4:

CH Inst 3 of type 3:

CH Inst 4 of type 2:

CH Inst 5 of type 2:

CH Inst 6 of type 5:

t0 0 t0 4 t0 8

t0 9 t0 1

t0 3

t0 7
 t0 5
 t0 6
 t0 2

 a0 14 a0 15 a0 11
a0 a0 _4_0

_10 a0a0
a0a0a0 _6 _13

a0 a0 a0 _7 _1 _5

a0 _16 _2a0
 _12 a0_9a0

(a) Result for initial partition

t0 6

a0

a0

a0_

a0_ a0_12

t0 1t0 0 PE Inst 0 of type 5:

PE Inst 1 of type 3:

PE Inst 2 of type 0:

CH Inst 0 of type 0:

CH Inst 1 of type 1:

CH Inst 2 of type 4: _13_14 _6

_5 _8

_2 a0a0

a0_11a0_10a0_0

a0a0a0a0

a0

t0 2

t0 5

t0 7 t0 9 t0 3

t0 8t0 4

(b) Result for intermediate partition

PE Inst 0 of type 6:

PE Inst 1 of type 0:

PE Inst 2 of type 1:

CH Inst 0 of type 0:

CH Inst 1 of type 2: 11_a0_a0a0 a0 _216 a0_a0a0a0_10

a0_a0_7a0_a0 14 a0_5a0_2

0 _a0

t0_5

t0_9

t0_8t0_7t0_3t0_2

t0_6t0_4t0_1

t0_0

(c) Result for final partition

Fig.5 Results for partitioning steps

4.2 Run time

To examine the run time feature of the proposed scheduling algorithm, we take experiments on 5 task graph
examples with various node numbers of 10 to 200. These task graphs are also generated by TGFF. We repeatedly
run the program on these 11 task graph examples for 100 times with different partitions, record the time consumed
and calculate the average run time of each graph size. The results are collected in Table 2 below. Note the run time
is recorded in millisecond.

Obviously, the scheduling algorithm runs very fast, no more than 0.06 second for the task graph with 50 nodes
and 109 edges, and about 3.2 second for 200 nodes and 432 edges. The increasing trend of the run time complies
with the analysis in previous section, which indicates a time complexity of O((n+m)2).

It should be noted that in our experiments, the scheduling algorithm is executed with the partitioning
algorithm, which generates and accepts partitions under optimization rule. For each run, a large number of partitions
are generated and compared. But the whole process runs smoothly and quickly, owing to the simplification of the
entire design exploration procedure introduced by the proposed scheduling with resource allocation heuristic. We

 吴强 等:系统级综合中结合资源分配的调度算法 227

believe this will be very advantageous in the design exploration of SLS for SoC designs.

Table 2 Results of task graph examples
Task graph Node num. Edge num. Arch. (PE /CH num.) Avg. run time (ms) Max. run time (ms)

T10 10 17 3/1 2.2 2.5
T20 20 47 4/3 9.6 10.1
T30 30 82 5/5 28.6 29.3
T40 40 91 7/5 36.2 38.4
T50 50 109 7/5 56.7 59.6
T60 60 159 9/5 141.4 163.0
T70 70 181 10/5 195.6 230.1
T80 80 203 11/5 267.2 329.9
T90 90 213 15/7 341.4 362.6

T100 100 235 15/7 444.6 485.2
T200 200 432 30/13 3203.0 3335.1

5 Conclusion

In this paper, a heuristic algorithm that can perform allocation and assignment along with the scheduling is
presented. The original idea is based on the observation that the allocation of the resources can be deduced from the
partition decision and the resource requirement arisen in the scheduling and assignment. In the scheduling, tasks and
communications are postponed within their slacks to get fit in vacant intervals on resource instances. Rescheduling
is performed to make use of the newly allocated instances. Preliminary experiments show the feasibility of the
algorithm. Reasonable allocation, scheduling and assignment solution can be obtained for a given partition. Such a
scheduling algorithm can simplify design exploration flow to an iterative procedure of partitioning, scheduling and
evaluation, which will be helpful for the efficiency in the system-level synthesis. Currently we are attempting to
integrate the proposed algorithm with the front-end compiler under development into a system-level synthesis
framework, which is intended to transform the system-level functionality described with C or VHDL to the
synthesizable RTL codes for system implementation.

References:
[1] Wolf W. A decade of hardware/software codesign. IEEE Computer, 2003,36(4):38−43.

[2] Eles P, Kuchcinski K, Peng Z. System Synthesis with VHDL. Boston: Kluwer Academic Publishers, 1998.

[3] Xiong ZH, Li SK, Chen JH. Hardware/Software partitioning based on dynamic combination of genetic algorithm and ant algorithm.

Journal of Software, 2005,16(4):503−512 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/16/503.htm

[4] Jang H, Kang M, Lee M, Chae K, Lee K, Shim K. High-Level system modeling and architecture exploration with SystemC on a

network SoC: S3C2510 case study. In: Figueras J, ed. Proc. of the Design, Automation and Test in Europe. Paris: IEEE Press, 2004.

538−543.

[5] Gajski D, Vahid F, Narayan S, Gong J. SpecSyn: An environment supporting the specify-explore-refine paradigm for

hardware/software system design. IEEE Trans. on Very Large Scale Integration Systems, 1998,6(1):84−100.

[6] Peng J, Abdi S, Gajski D. Automatic model refinement for fast architecture exploration. In: Sherlekar SD, ed. Proc. of the Conf. on

Asia South Pacific Design Automation/VLSI Design. Bangalore: IEEE Computer Society, 2002. 332−337.

[7] Dziri M, Samet F, Wagner F, Cesario W, Jerraya A. Combining architecture exploration and a path to implementation to build a

complete SoC design flow from system specification to RTL. In: Yasuura H, ed. Proc. of the Aisa South Pacific Design Automation

Conf. Kitakyushu: IEEE Computer Society, 2003. 219−224.

[8] Ernst R, Haubelt C, Richter K, Teich J. System design for flexibility. In: Franca J, ed. Proc. of the Design, Automation and Test

Conf. in Europe. Paris: IEEE Computer Society, 2002. 854−861.

[9] Véstias M, Neto H. System-Level co-synthesis of dataflow dominated applications on reconfigurable hardware/software

architectures. In: Kordon F, Henkel J, eds. Proc. of the 13th IEEE Int’l Workshop on Rapid System Prototyping. Darmstadt: IEEE

Computer Society, 2002. 130−137.

 228 Journal of Software 软件学报 Vol.18, No.2, February 2007

[10] Prakash S, Parker AC. A design method for optimal synthesis of application-specific heterogeneous multiprocessor systems. In:

Gottlieb A, ed. Proc. of the 19th Annual Int’l Symp. on Computer Architecture. Queensland: IEEE Computer Society, 1992. 75−80.

[11] Wolf W. An architectural co-synthesis algorithm for distributed embedded computing systems. IEEE Trans. on VLSI Systems,

1997,5(2):218−229.

[12] Xie Y, Wolf W. Allocation and scheduling of conditional task graphs in co-synthesis. In: Jerraya A, ed. Proc. of the Design,

Automation and Test Conference in Europe. Munich: IEEE Computer Society, 2001. 620−625.

[13] Dick R, Rhodes D, Wolf W. TGFF: Task graphs for free. In: Borriello G, Jerraya A, Lavagno L, eds. Proc. of the 6th Int’l

Workshop on Hardware/Software Codesign. Seattle: IEEE Computer Society, 1998. 97−101.

附中文参考文献:
[3] 熊志辉 ,李思昆 ,陈吉华 .遗传算法与蚂蚁算法动态融合的软硬件划分 .软件学报 ,2005,16(4):503−512. http://www.jos.org.cn/

1000-9825/16/503.htm

WU Qiang was born in 1974. He is an
associate professor of Hunan University.
His current research areas are SOC
oriented system design automation and
reconfigurable computing.

 XUE Hong-Xi was born in 1938. He is a
professor of Tsinghua University. His
research area is digital system design
automation.

BIAN Ji-Nian was born in 1945. He is a
professor of Tsinghua University and a
CCF senior member. His research area is
SOC oriented system design automation.

全国电子政务技术及应用学术研讨会（EGTA 2007）

征 文 通 知

为促进我国电子政务建设，推动国内电子政务相关技术和应用研究成果的交流，中国计算机学会暨电子政务与办公自动化专

委会决定于 2007 年 9 月 14 日~16 日在中国人民大学召开全国电子政务技术与应用学术研讨会。会议将就电子政务建设相关的关
键共性技术、项目方案设计、实施与应用等问题进行深层次的研讨。论文集将由《武汉大学学报（英文）》（EI 源刊）、核心期刊
《计算机科学》专刊和中央级出版社出版。会议期间除了进行会议论文交流以外，还将邀请著名学者作特邀报告。欢迎从事电子

政务技术与应用相关研究工作的专家、学者和企业界人士踊跃投稿。

一、征文范围（包括但不限于）
电子政务组网关键技术，电子政务网络可信互联关键技术，电子政务门户技术，电子政务业务流程优化重组，数据库关键技

术，信息检索与数据挖掘技术，工作流模型，电子政务应用支撑平台，XML与半结构化数据管理，组件与中间件技术，决策支持
与分析技术，电子政务信息安全保障，电子政务应用系统设计，新技术在电子政务中的应用，电子政务优秀产品和技术，电子政

务优秀实施案例分析。

二、来稿要求
1．本次会议只接受 E-mail中文投稿。
2．论文字数一般不超过 6000 字，为了便于出版论文集，来稿必须附中英文摘要、关键词、资助基金与主要参考文献，注明

作者及主要联系人姓名、工作单位、详细通信地址（包括 E-mail地址）与作者简介。稿件要求采用 Word或 PDF格式。

三、重要日期
征文截止日期：2007年 4月 1日 录用通知发出日期：2007年 4月 20日 正式论文提交日期：2007年 5月 10日

四、联系信息
1．联系人：国家信息中心信息化研究部 单志广（shanzhiguang@263.net）
2．会务情况：中国人民大学 杨楠，姜芳艽（wisa2007@gmail.com）
3．大会网站：http://www.ruc.edu.cn/wisa2007/；http://www.neu.edu.cn/wisa2007/

mailto:swws@seu.edu.cn
http://www.ruc.edu.cn/wisa2007/

	Introduction
	System Model
	Functional model
	Architectural model

	Scheduling Algorithm
	Solution representation
	Main flow
	Scheduling of nodes and edges
	Rescheduling of delayed nodes and edges

	Experimental Results
	Feasibility
	Run time

	Conclusion

