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Abstract:  In system-level synthesis, the allocation of resources is always decided by the designer or explored in 
the outer-most loop. In this paper, a heuristic scheduling algorithm is proposed to find the resource allocation during 
its running process. It determines the appropriate number of required resource instances based on the system 
partition in scheduling, and generates the corresponding resource allocation, scheduling and assignment solution. 
Such an algorithm can simplify the system-level design exploration to a procedure of system partitioning, 
scheduling and evaluation, and can improve the exploration efficiency. Experimental results show the feasibility and 
validity of the approach. 
Key words:  task scheduling; resource allocation; heuristic algorithm; design space exploration; system-level 

synthesis 

摘  要: 在系统级综合中,资源的分配通常由设计者指定,或在设计空间搜索的最外层循环中进行枚举探索.提出
了一种结合资源分配的启发式调度算法.它根据当前系统划分的结果,在调度过程中寻找合适的所需资源实例的数
目,从而确定系统的资源分配以及调度指派方案.应用该调度算法可使设计空间搜索过程简化为划分、调度和评估
三个步骤,省去了最外层的资源分配枚举循环,提高了搜索效率.实验结果验证了该算法的可行性和有效性. 
关键词: 任务调度;资源分配;启发式算法;设计空间搜索;系统级综合 
中图法分类号: TP301   文献标识码: A 

1   Introduction 

System design exploration is very important for system-level synthesis (SLS) of embedded systems, which 
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attempts to find a best design solution according to the performance, power consumption and price goals[1,2]. 
Intensive research efforts have been made to address this issue. Many of them assume a fixed architecture or 
provided by the designer. In Ref.[3], the author adopts a fixed architecture template that consists of one 
microprocessor and several logic blocks. In Ref.[4], the system implementation architecture is interactively 
improved with the SystemC based co-simulation tool manually. In SpecSyn, the architecture specification is 
supplied by the designer, and is evaluated and refined in the succeeding steps[5]. Later in Ref.[5], Peng and Abdi 
proposed algorithms to perform automatic model refinements for the architectures provided by the designer or 
generation tools. In M Dziri’s full SoC design flow, VCC is employed to do the architectural exploration, which 
needs manual interactions too[7]. 

Some research works consider the automated architecture generation, which concerns the partitioning, resource 
allocation, and task scheduling and assignment problems. In Ref.[8], a method is presented to do flexible design 
exploration with architectural allocation, where available types and maximal number of resources are 
predetermined. In Véstias’ rapid prototyping platform, architectures are explored in outer loop of the co-synthesis 
flow. Resource instances are inserted one-by-one until the maximal number of resource instance is reached[9]. In 
SOS, Prakash and Parker proposed a mixed integer linear programming model to automatically synthesize an 
architecture with arbitrary topology[10]. But their algorithm has difficulty to deal with large systems due to its high 
time complexity. Wolf then used a heuristic approach to deal with this problem[11]. In his algorithm, resources are 
allocated before partitioning, and then reduced after scheduling by eliminating resource instances without tasks 
assigned on them. Xie and Wolf extended this work to deal with conditional task graphs in Ref.[12]. In most of 
these efforts, scheduling algorithms always reside in the inner-most loop of the design exploration to provide 
evaluation of the design solution. Partitioning algorithms are responsible to optimize the partition decision, which is 
often placed outside the scheduling procedure. Resource allocation is often placed in the outer-most loop of the 
design exploration. 

In this paper, we propose a scheduling algorithm which produces allocation, schedule and assignment in one 
run. With such a scheduling algorithm, the design exploration flow can be simplified to an iterative procedure of 
partitioning, scheduling and evaluation, eliminating the outer-most architectural exploration loop. This, in our point 
of view, will be helpful for a fast and efficient design exploration at system level. Such a design flow has been 
introduced into a system-level synthesis framework for SoC design. 

2   System Model 

2.1   Functional model 

We use the task graph[13] as the functional description of the system, which is a directed acyclic graph (DAG), 
G=〈V,E〉, with node set V and edge set E. Each node vi represents a task of the system. Each edge 〈vi,vj〉 represents 
the data dependency and communication between the two connected nodes. 

Weights associated with nodes include task type tt and a deadline dl. Task type indicates what type of function 
performed by this node. Deadline indicates that the task execution of the node must finish before the time 
designated. Weight associated with edges is the communication data quantity cq, which indicates how much data 
will be transferred when the communication of this edge is committed. 

2.2   Architectural model 

Resources that implement the system function are modeled as processing elements (PE) and communication 
channels (CH). A PE is a component that executes the tasks, which can be a microprocessor with local memory and 

  



 222 Journal of Software 软件学报 Vol.18, No.2, February 2007   

 
internal bus, or an application specific integrated circuit (ASIC), or even an IP core. A CH is a component that 
executes the communication between tasks, which can be a bus with access arbitrator, or a shared memory with 
management circuit, or even an IP core implementing a particular communication protocol. The whole system can 
be viewed as several PEs connected with a network of CHs as outlined in Fig.1. 
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Fig.1  Architectural model 

In system synthesis, nodes in task graph are mapped to PEs, while edges to CHs. A resource library is built to 
hold the attributes of the available PEs and CHs. 

The attributes of chip area, price and idle power consumption are associated with each PE type only, while the 
execution time and power consumption are associated with task types. Different types of PE will have different 
combination of these attribute values. Apparently, a type of PE can execute several types of tasks, and a type of task 
can run on many candidate types of PEs. 

For CHs, concerned attributes include the average chip area per link, average price per link, idle power 
consumption, average transfer speed, and average transfer power consumption per bit in correspondence with 
interface types. With the interface type, we mean the communication protocol and interface of a CH instance. 
Obviously, transfer speed and power consumption are not necessarily the same under different interface types. 
Furthermore, interface type of a CH instance should be compatible with those of PE instances it connects. Here, we 
assume that the interface type of a PE is determined by its own type. 

3   Scheduling Algorithm 

3.1   Solution representation 

As mentioned in the first section, the resource allocation will be produced during the scheduling process. It can 
be represented with two sets of instances, one for PEs, the other for CHs. The label of each instance indicates the 
resource type and the serial number of the instances of this type. 

Allocation A::=〈PEA,CHA〉, where PEA::={pe00,…,peij,…,penm}, CHA::={ch00,…,chkl,…,chpq}. 
We appoint CH type 0 as the internal link CH type, and always allocate one instance of this type with label 

ch00. All the communications occurring between the nodes on the same PE instance will be placed on this instance. 
The representation of the schedule and assignment is relatively simple and straightforward as follows. 
Schedule S::=〈VS,ES〉, where VS::={〈vi,tsi,peij〉},VE::={〈et,tst,chkl〉}. 
Other terms and expressions used are listed below: ASAP(ni) is the As Soon As Possible start time of the node 

or edge ni; ALAP(ni) is the As Late As Possible start time of the node or edge ni; SLACK(ni) is defined as 
SLACK(ni)=ALAP(ni)−ASAP(ni) which serves as a measure of priority of the node or edge ni. 
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3.2   Main flow 

We choose a list-scheduling scheme as the main flow of the algorithm as shown in Fig.2. 
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Fig.2  Main flow 

It initializes the ready list with the source nodes of the task graph, then repeats to select a task or 
communication from the ready list, schedule and bind it, and insert all successors of the scheduled task or 
communication into the ready list. When the ready list is empty, which means all tasks and communications have 
been scheduled and bound, it finishes and returns the result to the design exploration procedure. 

Note in the above procedure, the ASAP and ALAP start time are initialized at the beginning of the scheduling 
process with the assumption of infinite resources. During the scheduling process, they will be updated to reflect 
actual resource allocation and schedule of the nodes and edges. 

3.3   Scheduling of nodes and edges 

The scheduling of nodes and edges on the resource instances are alike, which is outlined below: 
1. Let ni be the node or edge to be scheduled. Collect all the instances which have the same type as that of 

ni’s partition into the set vinsts. If vinsts=∅, allocate a new instance of this type and insert it into vinsts; 
2. For each instance inst in vinsts, check if there exists a vacant interval on it for ni. If so, inst→vains; 
3. If vains=∅, allocate a new instance for ni. Reschedule the previously delayed nodes or edges to utilize 

this new instance and determine the start time for ni on it; 
4. Else vains is not empty, select an instance that can provide the earliest start time for ni from vains. 

Schedule and assign ni with this start time as the ni on this instance; 
5. If the start time of ni is greater than its ASAP start time, then record ni as a delayed node or edge. 

In the above procedure, the algorithm will check all the current resource instances of ni’s type, say vinsts, to 
find a available vacant interval fit for ni. Figure 3 gives the details of this check on an instance inst from vinsts. In 
the figure, t1 and t2 are the ASAP(ni) and ALAP(ni) respectively. td is the run time of ni on this type of resource. A 
possible vacant interval for ni is [tb,tf]. tb and tf are the end time of na and start time of nb respectively, which have 
been already scheduled and assigned on the inst. The term “possible interval” means tb≤t2. 

• If tb≤t1∧tf≥t1+td, the ni can be naturally fitted in the interval, as shown in Fig.3(a). 
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• If t1≤tb≤t2∧tf≥tb+td, the ni can be pushed and fitted in the interval [tb,tb+td], as shown in Fig.3(b). 
• If tb≤t1∧≥tb+td≥tf, we can push nb to fit ni in the interval [t1,t1+td], satisfying that pushing nb will not 

cause nb violate its deadline, as shown in Fig.3(c). 
• If t1≤tb≤t2∧≥tb+td≥tf, this can be regarded as the combination of the above two cases. We can push ni and 

nb to fit ni in the interval [tb,tb+td], satisfying that pushing nb will not cause nb violate its deadline. For 
other cases, there is no vacant interval fit for ni on inst. 
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Fig.3  Fit ni in vacant interval on inst 

3.4   Rescheduling of delayed nodes and edges 

After the check of the available instances, all the instances that can accommodate ni will be found out and 
stored in vains with the corresponding start time. But cases may happen that no instances can provide ni a vacant 
interval. In such cases, a new instance is allocated for ni. Rescheduling of the previously scheduled nodes and edges 
on other instances of the same resource type is performed to make use of the newly allocated instance. Intuitively, 
only those nodes or edges that are delayed in the previous scheduling are worthy of considering, since rescheduling 
un-delayed nodes or edges will not make them start earlier or occupy less resource. Rescheduling is described in 
below. 

1. Let newinst be the newly allocated instance for ni. Schedule ni on newinst at its ASAP start time; 
2. Find all the delayed nodes or edges that can be rescheduled to the newinst, store them in the set resched; 
3. Select the node or edge nk with the minimal slack in resched, and try to schedule it on newinst. During 

this process, postponing operation may also be performed to get nk fit in the vacant intervals on newinst; 
4. If nk can be rescheduled earlier on newinst, move it to newinst. Update its ASAP start time, as well as 

those of its successors; 
5. Delete nk from resched. If resched=∅, stop, else goto step 3. 

Note that the postponed operation performed in the rescheduling is a little different from that in the original 
scheduling process. In rescheduling, the postponed operation should not postpone any edges or nodes even behind 
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their originally scheduled start time. In this sense, the postponed rules are tighter for rescheduling than for the 
original scheduling. 

In the worst case, rescheduling will cause the check on all the previously scheduled tasks and communications, 
which costs at most O(n+m) time. Combined with the O(n+m) time of the list-scheduling scheme of the main 
algorithm flow, the total time complexity in the worst case will be O((n+m)2). Here n is the number of the nodes, 
and m is the number of edges of the task graph. 

4   Experimental Results 

4.1   Feasibility 

We implement the scheduling algorithm in C++ and take some tests on a v880 machine running Sun Solaris. 8 
types of PE and 4 types of CH are generated by TGFF as the resource library. Then we apply the scheduling 
algorithm with the partitioning algorithm on a task graph example generated by TGFF shown in Fig.4. The screen 
shots of the results outputted by the scheduling algorithm at 3 steps of the design exploration procedure are shown 
in Fig.5. In the figure, white boxes are PE or CH instances, while the grey bars on them are nodes or edges assigned 
on these instances. Grey lines are used to indicate relations of nodes and edges. For example, node 0 connects node 
1 with an edge, namely 0. Then, a line is drawn from the bar t0_0 to the bar a0_0, and a line is from bar a0_0 to bar 
t0_1. 
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Fig.4  A task graph example 

Sub-Diagram Fig.5(a) is the result of the initial randomly-generated partition. Sub-Diagram Fig.5(b) 
corresponds to an intermediate partition during the whole optimization process. Sub-Diagram Fig.5(c) is the result 
corresponding to the final partition solution. It can be seen that the result for the final partition allocates 3 PE 
instances with type 6, 0 and 1 respectively, as well as only 1 CH instance of type 2. Communications other than 
those scheduled on the only CH instance are all executed on the internal link. This can be viewed as an architecture 
consisting of two processors with a dedicated functional component connected with a system bus. 

We also take experiments on other task graph examples and the resultant PE and CH numbers are listed in 
Table 1. Note that the internal link CH is not counted in the CH number. Apparently, the scheduling algorithm can 
produce a reasonable result under the given partition. 
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Fig.5  Results for partitioning steps 

4.2   Run time 

To examine the run time feature of the proposed scheduling algorithm, we take experiments on 5 task graph 
examples with various node numbers of 10 to 200. These task graphs are also generated by TGFF. We repeatedly 
run the program on these 11 task graph examples for 100 times with different partitions, record the time consumed 
and calculate the average run time of each graph size. The results are collected in Table 2 below. Note the run time 
is recorded in millisecond. 

Obviously, the scheduling algorithm runs very fast, no more than 0.06 second for the task graph with 50 nodes 
and 109 edges, and about 3.2 second for 200 nodes and 432 edges. The increasing trend of the run time complies 
with the analysis in previous section, which indicates a time complexity of O((n+m)2). 

It should be noted that in our experiments, the scheduling algorithm is executed with the partitioning 
algorithm, which generates and accepts partitions under optimization rule. For each run, a large number of partitions 
are generated and compared. But the whole process runs smoothly and quickly, owing to the simplification of the 
entire design exploration procedure introduced by the proposed scheduling with resource allocation heuristic. We 
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believe this will be very advantageous in the design exploration of SLS for SoC designs. 

Table 2  Results of task graph examples 
Task graph Node num. Edge num. Arch. (PE /CH num.) Avg. run time (ms) Max. run time (ms) 

T10 10 17 3/1 2.2 2.5 
T20 20 47 4/3 9.6 10.1 
T30 30 82 5/5 28.6 29.3 
T40 40 91 7/5 36.2 38.4 
T50 50 109 7/5 56.7 59.6 
T60 60 159 9/5 141.4 163.0 
T70 70 181 10/5 195.6 230.1 
T80 80 203 11/5 267.2 329.9 
T90 90 213 15/7 341.4 362.6 

T100 100 235 15/7 444.6 485.2 
T200 200 432 30/13 3203.0 3335.1 

5   Conclusion 

In this paper, a heuristic algorithm that can perform allocation and assignment along with the scheduling is 
presented. The original idea is based on the observation that the allocation of the resources can be deduced from the 
partition decision and the resource requirement arisen in the scheduling and assignment. In the scheduling, tasks and 
communications are postponed within their slacks to get fit in vacant intervals on resource instances. Rescheduling 
is performed to make use of the newly allocated instances. Preliminary experiments show the feasibility of the 
algorithm. Reasonable allocation, scheduling and assignment solution can be obtained for a given partition. Such a 
scheduling algorithm can simplify design exploration flow to an iterative procedure of partitioning, scheduling and 
evaluation, which will be helpful for the efficiency in the system-level synthesis. Currently we are attempting to 
integrate the proposed algorithm with the front-end compiler under development into a system-level synthesis 
framework, which is intended to transform the system-level functionality described with C or VHDL to the 
synthesizable RTL codes for system implementation. 
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委会决定于 2007 年 9 月 14 日~16 日在中国人民大学召开全国电子政务技术与应用学术研讨会。会议将就电子政务建设相关的关
键共性技术、项目方案设计、实施与应用等问题进行深层次的研讨。论文集将由《武汉大学学报（英文）》（EI 源刊）、核心期刊
《计算机科学》专刊和中央级出版社出版。会议期间除了进行会议论文交流以外，还将邀请著名学者作特邀报告。欢迎从事电子

政务技术与应用相关研究工作的专家、学者和企业界人士踊跃投稿。 
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术，信息检索与数据挖掘技术，工作流模型，电子政务应用支撑平台，XML与半结构化数据管理，组件与中间件技术，决策支持
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务优秀实施案例分析。 
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