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Abstract: In system-level synthesis, the allocation of resources is always decided by the designer or explored in
the outer-most loop. In this paper, a heuristic scheduling algorithm is proposed to find the resource allocation during
its running process. It determines the appropriate number of required resource instances based on the system
partition in scheduling, and generates the corresponding resource allocation, scheduling and assignment solution.
Such an agorithm can simplify the system-level design exploration to a procedure of system partitioning,
scheduling and evaluation, and can improve the exploration efficiency. Experimental results show the feasibility and
validity of the approach.
Key words: task scheduling; resource alocation; heuristic algorithm; design space exploration; system-level
synthesis
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1 Introduction

System design exploration is very important for system-level synthesis (SLS) of embedded systems, which
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attempts to find a best design solution according to the performance, power consumption and price goals'™Z.
Intensive research efforts have been made to address this issue. Many of them assume a fixed architecture or
provided by the designer. In Ref.[3], the author adopts a fixed architecture template that consists of one
microprocessor and several logic blocks. In Ref.[4], the system implementation architecture is interactively
improved with the SystemC based co-simulation tool manually. In SpecSyn, the architecture specification is
supplied by the designer, and is evaluated and refined in the succeeding steps'™. Later in Ref.[5], Peng and Abdi
proposed algorithms to perform automatic model refinements for the architectures provided by the designer or
generation tools. In M Dziri's full SoC design flow, VCC is employed to do the architectural exploration, which
needs manual interactions too'”.

Some research works consider the automated architecture generation, which concerns the partitioning, resource
allocation, and task scheduling and assignment problems. In Ref.[8], a method is presented to do flexible design
exploration with architectural alocation, where available types and maxima number of resources are
predetermined. In Véstias' rapid prototyping platform, architectures are explored in outer loop of the co-synthesis
flow. Resource instances are inserted one-by-one until the maximal number of resource instance is reached®. In
SOS, Prakash and Parker proposed a mixed integer linear programming model to automatically synthesize an
architecture with arbitrary topology!™®. But their algorithm has difficulty to deal with large systems due to its high
time complexity. Wolf then used a heuristic approach to deal with this problem!*). In his algorithm, resources are
allocated before partitioning, and then reduced after scheduling by eliminating resource instances without tasks
assigned on them. Xie and Wolf extended this work to deal with conditional task graphs in Ref.[12]. In most of
these efforts, scheduling algorithms always reside in the inner-most loop of the design exploration to provide
evaluation of the design solution. Partitioning algorithms are responsible to optimize the partition decision, which is
often placed outside the scheduling procedure. Resource allocation is often placed in the outer-most loop of the
design exploration.

In this paper, we propose a scheduling algorithm which produces allocation, schedule and assignment in one
run. With such a scheduling algorithm, the design exploration flow can be simplified to an iterative procedure of
partitioning, scheduling and evaluation, eliminating the outer-most architectural exploration loop. This, in our point
of view, will be helpful for a fast and efficient design exploration at system level. Such a design flow has been
introduced into a system-level synthesis framework for SoC design.

2 System Model

2.1 Functional model

We use the task graph!*® as the functional description of the system, which is a directed acyclic graph (DAG),
G=(V,E), with node set V and edge set E. Each node v; represents a task of the system. Each edge (v;,v;) represents
the data dependency and communication between the two connected nodes.

Weights associated with nodes include task type tt and a deadline dl. Task type indicates what type of function
performed by this node. Deadline indicates that the task execution of the node must finish before the time
designated. Weight associated with edges is the communication data quantity cg, which indicates how much data
will be transferred when the communication of this edge is committed.

2.2 Architectural model

Resources that implement the system function are modeled as processing elements (PE) and communication
channels (CH). A PE is a component that executes the tasks, which can be a microprocessor with local memory and
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internal bus, or an application specific integrated circuit (ASIC), or even an |IP core. A CH is a component that
executes the communication between tasks, which can be a bus with access arbitrator, or a shared memory with
management circuit, or even an |P core implementing a particular communication protocol. The whole system can
be viewed as several PEs connected with a network of CHs as outlined in Fig.1.

PE

Intf.

Intf.
Intf

PE PE

Intf.

PE

Fig.1 Architectural model

In system synthesis, nodes in task graph are mapped to PEs, while edges to CHs. A resource library is built to
hold the attributes of the available PEs and CHs.

The attributes of chip area, price and idle power consumption are associated with each PE type only, while the
execution time and power consumption are associated with task types. Different types of PE will have different
combination of these attribute values. Apparently, a type of PE can execute several types of tasks, and a type of task
can run on many candidate types of PEs.

For CHSs, concerned attributes include the average chip area per link, average price per link, idle power
consumption, average transfer speed, and average transfer power consumption per bit in correspondence with
interface types. With the interface type, we mean the communication protocol and interface of a CH instance.
Obviously, transfer speed and power consumption are not necessarily the same under different interface types.
Furthermore, interface type of a CH instance should be compatible with those of PE instances it connects. Here, we
assume that the interface type of a PE is determined by its own type.

3 Scheduling Algorithm

3.1 Solution representation

As mentioned in the first section, the resource allocation will be produced during the scheduling process. It can
be represented with two sets of instances, one for PESs, the other for CHs. The label of each instance indicates the
resource type and the serial number of the instances of this type.

Allocation A::=(PEA,CHA), where PEA::={pey, ...,P&;,...,Pem} , CHA::={Chq,...,Chy,...,.Chyg} .

We appoint CH type 0 as the internal link CH type, and always allocate one instance of this type with label
chgo. All the communications occurring between the nodes on the same PE instance will be placed on this instance.

The representation of the schedule and assignment is relatively simple and straightforward as follows.

Schedule S:=(VSES), where VS::={(v;,ts,pe))} ,VE::={(e,ts,chy)} .

Other terms and expressions used are listed below: ASAP(n;) is the As Soon As Possible start time of the node
or edge n;; ALAP(n;) is the As Late As Possible start time of the node or edge n;; SLACK(n;) is defined as
SLACK(n;)=ALAP(n;)-ASAP(n;) which serves as a measure of priority of the node or edge n;.
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3.2 Main flow

We choose a list-scheduling scheme as the main flow of the algorithm as shown in Fig.2.

L

A

Try scheduling ¢
tasks

Allocate new
resource

Violating
resource cost
constraints?

Bind tasks on
resources

Reschedule
tasks

| ]

Return Return with no
sult feasible solution

Fig.2 Mainflow

It initializes the ready list with the source nodes of the task graph, then repeats to select a task or
communication from the ready list, schedule and bind it, and insert all successors of the scheduled task or
communication into the ready list. When the ready list is empty, which means all tasks and communications have
been scheduled and bound, it finishes and returns the result to the design exploration procedure.

Note in the above procedure, the ASAP and ALAP start time are initialized at the beginning of the scheduling
process with the assumption of infinite resources. During the scheduling process, they will be updated to reflect
actual resource allocation and schedule of the nodes and edges.

3.3 Scheduling of nodes and edges

The scheduling of nodes and edges on the resource instances are alike, which is outlined below:
1. Let n; be the node or edge to be scheduled. Collect all the instances which have the same type as that of
n;'s partition into the set vinsts. If vinsts=&, allocate a new instance of this type and insert it into vinsts;

2. For each instance inst in vinsts, check if there exists avacant interval on it for n;. If so, inst—vains;

If vains=d, allocate a new instance for n;. Reschedule the previously delayed nodes or edges to utilize
this new instance and determine the start time for n; on it;

4. Else vains is not empty, select an instance that can provide the earliest start time for n; from vains.

Schedule and assign n; with this start time as the n; on this instance;

5. If the start time of n; is greater than its ASAP start time, then record n; as a delayed node or edge.

In the above procedure, the algorithm will check all the current resource instances of n;’s type, say vinsts, to
find a available vacant interval fit for n;. Figure 3 gives the details of this check on an instance inst from vinsts. In
the figure, t; and t, are the ASAP(n;) and ALAP(n;) respectively. tq is the run time of n; on this type of resource. A
possible vacant interval for n; is [ty,t]. t, and t; are the end time of n, and start time of n, respectively, which have
been already scheduled and assigned on the inst. The term “possible interval” means tp<t,.

. If tp<tyAte>ty+tg, the nj can be naturally fitted in the interval, as shown in Fig.3(a).
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. If t1<t,<toate>ty+tg, the n; can be pushed and fitted in the interval [ty,ty+tg], as shown in Fig.3(b).

. If tp<tyA>t,+te>t;, we can push n, to fit n; in the interval [ti,ti+t4], satisfying that pushing n, will not
cause n, violate its deadline, as shown in Fig.3(c).

. If t1<tp<t,n>tp+te>t;, this can be regarded as the combination of the above two cases. We can push n; and
n, to fit n; in the interval [ty ty+ty], satisfying that pushing n, will not cause n, violate its deadline. For
other cases, there is no vacant interval fit for n; on inst.

} =

inst Na Ny inst ‘ Na ‘ n; ‘ ‘ Ny ‘
tb tl t2 tf tb tS te tf

(a) Naturally fitting

n }-—» t t,

. Ny Ny . ‘ Na n; ‘ ‘ Ny ‘
inst inst
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(b) Postpone n; to fit

n; ‘ S )

inst fa o e inst ‘ fla ‘ n o
th t L th s ta t}
(c) Postpone n, to fit

Fig.3 Fitn; invacant interval on inst

3.4 Rescheduling of delayed nodes and edges

After the check of the available instances, all the instances that can accommodate n; will be found out and
stored in vains with the corresponding start time. But cases may happen that no instances can provide n; a vacant
interval. In such cases, a new instance is alocated for n;. Rescheduling of the previously scheduled nodes and edges
on other instances of the same resource type is performed to make use of the newly allocated instance. Intuitively,
only those nodes or edges that are delayed in the previous scheduling are worthy of considering, since rescheduling
un-delayed nodes or edges will not make them start earlier or occupy less resource. Rescheduling is described in
below.

Let newinst be the newly allocated instance for n;. Schedule n; on newinst at its ASAP start time;

Find all the delayed nodes or edges that can be rescheduled to the newinst, store them in the set resched;
Select the node or edge n, with the minimal slack in resched, and try to schedule it on newinst. During
this process, postponing operation may also be performed to get n fit in the vacant intervals on newinst;

4. If ng can be rescheduled earlier on newinst, move it to newinst. Update its ASAP start time, as well as

those of its successors;

5.  Delete n, from resched. If resched=, stop, else goto step 3.

Note that the postponed operation performed in the rescheduling is a little different from that in the original
scheduling process. In rescheduling, the postponed operation should not postpone any edges or nodes even behind

© DEEREBAAAIFUN bt/ www. jos. org. cn



225

their originally scheduled start time. In this sense, the postponed rules are tighter for rescheduling than for the
original scheduling.

In the worst case, rescheduling will cause the check on all the previously scheduled tasks and communications,
which costs at most O(n+m) time. Combined with the O(n+m) time of the list-scheduling scheme of the main
algorithm flow, the total time complexity in the worst case will be O((n+m)?). Here n is the number of the nodes,
and misthe number of edges of the task graph.

4 Experimental Results

4.1 Feasibility

We implement the scheduling algorithm in C++ and take some tests on a v880 machine running Sun Solaris. 8
types of PE and 4 types of CH are generated by TGFF as the resource library. Then we apply the scheduling
algorithm with the partitioning algorithm on a task graph example generated by TGFF shown in Fig.4. The screen
shots of the results outputted by the scheduling algorithm at 3 steps of the design exploration procedure are shown
in Fig.5. In the figure, white boxes are PE or CH instances, while the grey bars on them are nodes or edges assigned
on these instances. Grey lines are used to indicate relations of nodes and edges. For example, node O connects node
1 with an edge, namely 0. Then, aline is drawn from the bar t0O_0 to the bar a0_0, and alineisfrom bar a0_0 to bar
t0_1.

TASK_GRAPH 0

Period=850
In/out degree limits=5/5

[0

——
-
L bic

1] 2] 3]

d=850 d=850
Fig.4 A task graph example

Sub-Diagram Fig.5(a) is the result of the initial randomly-generated partition. Sub-Diagram Fig.5(b)
corresponds to an intermediate partition during the whole optimization process. Sub-Diagram Fig.5(c) is the result
corresponding to the final partition solution. It can be seen that the result for the final partition allocates 3 PE
instances with type 6, 0 and 1 respectively, as well as only 1 CH instance of type 2. Communications other than
those scheduled on the only CH instance are all executed on the internal link. This can be viewed as an architecture
consisting of two processors with a dedicated functional component connected with a system bus.

We also take experiments on other task graph examples and the resultant PE and CH numbers are listed in
Table 1. Note that the internal link CH is not counted in the CH number. Apparently, the scheduling algorithm can
produce a reasonabl e result under the given partition.
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PE Inst O of type 7:
PE Inst 1 of type 6:
PE Inst 2 of type O: |

PE Inst 3 of type 2: |
PE Inst 4 of type 2: |

PE Inst 5 of type 5:
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(a) Result for initial partition
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(b) Result for intermediate partition

PE Inst O of type 6:

PE Inst 1 of typeO:
PE Inst 2 of type 1: | i | .
CH Inst 0 of type O:] a0 2 20 20 14 ,.Hao 5/ a0 a0 7 |

CH Inst 1 of type 2:] ‘o 11 216

(c) Result for final partition

Fig.5 Resultsfor partitioning steps

4.2 Runtime

To examine the run time feature of the proposed scheduling algorithm, we take experiments on 5 task graph
examples with various node numbers of 10 to 200. These task graphs are also generated by TGFF. We repeatedly
run the program on these 11 task graph examples for 100 times with different partitions, record the time consumed
and calculate the average run time of each graph size. The results are collected in Table 2 below. Note the run time
is recorded in millisecond.

Obviously, the scheduling algorithm runs very fast, no more than 0.06 second for the task graph with 50 nodes
and 109 edges, and about 3.2 second for 200 nodes and 432 edges. The increasing trend of the run time complies
with the analysis in previous section, which indicates a time complexity of O((n+m)?).

It should be noted that in our experiments, the scheduling algorithm is executed with the partitioning
algorithm, which generates and accepts partitions under optimization rule. For each run, alarge number of partitions
are generated and compared. But the whole process runs smoothly and quickly, owing to the simplification of the
entire design exploration procedure introduced by the proposed scheduling with resource allocation heuristic. We
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believe thiswill be very advantageous in the design exploration of SLS for SoC designs.

Table2 Results of task graph examples

Task graph Nodenum. Edgenum. Arch. (PE/CHnum.) Avg.runtime(ms) Max. runtime (ms)

T10 10 17 3/1 22 25
T20 20 47 4/3 9.6 10.1
T30 30 82 5/5 28.6 293
T40 40 91 715 36.2 384
T50 50 109 715 56.7 59.6
T60 60 159 9/5 141.4 163.0
T70 70 181 10/5 195.6 230.1
T80 80 203 11/5 267.2 329.9
T90 90 213 15/7 341.4 362.6
T100 100 235 15/7 444.6 485.2
T200 200 432 30/13 3203.0 3335.1

5 Conclusion

In this paper, a heuristic algorithm that can perform allocation and assignment along with the scheduling is
presented. The original ideais based on the observation that the allocation of the resources can be deduced from the
partition decision and the resource requirement arisen in the scheduling and assignment. In the scheduling, tasks and
communications are postponed within their slacks to get fit in vacant intervals on resource instances. Rescheduling
is performed to make use of the newly allocated instances. Preliminary experiments show the feasibility of the
algorithm. Reasonable allocation, scheduling and assignment solution can be obtained for a given partition. Such a
scheduling algorithm can simplify design exploration flow to an iterative procedure of partitioning, scheduling and
evaluation, which will be helpful for the efficiency in the system-level synthesis. Currently we are attempting to
integrate the proposed algorithm with the front-end compiler under development into a system-level synthesis
framework, which is intended to transform the system-level functionality described with C or VHDL to the
synthesizable RTL codes for system implementation.
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