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Abstract: NKI (The National Knowledge Infrastructure) is a large-scale knowledge base, which uses frames to 
represent concepts in ontologies, and uses Horn logic programs as the automated reasoning. The formalizations of 
ontologies, frames and logical theories in NKI, and the transformations between the formalizations are given, and 
proved to be functors between ontologies, frames and logical theories if they are taken as categories in the theory of 
category. The result proved in this paper guarantees that in NKI, the inference based on the Horn logic programs is 
correct with respect to the knowledge base represented by ontologies and frames. 
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摘  要: NKI(国家知识基础设施)是一个大规模知识库,它用框架来表示本体中的概念,用Horn逻辑程序作为自动
推理.给出 NKI中的本体、框架和逻辑理论的形式表示以及形式表示之间的转换,并证明如果将本体、框架和逻辑
理论看作是 3个范畴,则这些转换是这 3个范畴之间的函子.这个结果保证了在 NKI中,基于 Horn逻辑程序的推理
关于用本体和框架表示的知识库是正确的. 
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1   Introduction 

There are several methods for representing knowledge which have the same expressiveness: classically the first 
order theories[1,2], frames[3], description logics[4], and conceptual graphs[5]. Every representation has its own 
presuppositions. When transforming one representation into another to prove that two representations have the same 
expressiveness, we find that it is necessary to articulate these presuppositions. Usually we prove that if a 
representation can be faithfully and fully transformed into the first order theories; and if every first order theory can 
be represented faithfully and fully in the representation, then the representation has the same expressiveness as the 
first order logic. Another reason to transform a representation into first order theories is given by Horty[6], when he 
considered the defeasible inheritance networks and the non-monotonity of defeasible inheritance reasoning. Horty[6] 
proposed that the defeasible inheritance networks  

...were supplied only with a ‘procedural’ semantics, according to which the meaning of the 
representations was supposed to be specified implicitly by the inference algorithms operating on 
them. It was soon realized, however, that these algorithms could lead to bizarre and unintuitive 
results in complicated cases, and researchers felt the need to provide an implementation-independent 
according of the meaning of these network formalisms. One natural idea involved providing a 
logical interpretation of the networks--interpreting the individual links in the network as logical 
formulas, and so the entire network as a collection of formulas, whose meaning could then be 
specified by the appropriate logic... 

Ontologies are used in knowledge engineering to share knowledge among different knowledge bases. Hence, 
ontologies should be neutral to the representation of knowledge. But ontologies should be represented in some 
formal or informal languages, and languages in any form are not sharable. Therefore, there is a trade-off between 
the neutrality and the usage of languages. 

We assume that (1) ontologies consist of propositions; (2) propositions are not sentences, but are what 
sentences express: different sentences in different languages (or possibly the same language) can express the same 
proposition; (3) propositions can be equivalent without being identical. Propositions and ontologies are objects we 
can talk about, and the content of an ontology consists of the propositions involving concepts in the ontology that 
are entailed by the constituent propositions of the ontology; and ontologies are comparable in terms of their 
contents. 

NKI[7,8] (The National Knowledge Infrastructure) is a large-scale knowledge base, which uses frames to 
represent concepts in ontologies, and uses Horn logic programs as the automated reasoning. Hence, NKI includes 
three classes of “concepts”: the first one is the class of concepts in ontologies, the second one is the class of frames 
which are used to represent concepts in an ontology; and the last one is the class of logical theories which have the 
equivalent meanings as the concepts and the frames. We formally articulate the presuppositions we make about the 
frames and ontologies, and show under the presuppositions, the equivalences between three classes to ensure that 
any query to NKI is given a correct answer. 

First we represent an ontology O as a set F of frames; and then represent the set F of frames as a set T of logical 
theories. We define the transformations σ : O→F and τ : F →T such that σ, τ are congruences, that is, they preserves 
the partial orders and basic defined operations in O, F and T. If O, F and T are taken as the categories in the category 
theory, then σ and τ are the functors between the categories. 

The paper is organized as follows: the next section gives the formal definitions of ontologies, concepts, frames 
and logical theories, and the comparisons between concepts, frames and logical theories; the third section defines 
the transformations from an ontology to frames and from frames to logical theories, and proves that the 
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transformations are faithful and structural-property-preserving; the fourth section takes the block world as an 
example to show how to build an ontology, define frames and transform frames into logical theories in knowledge 
engineering; the last section concludes the paper.  

2   The Concepts, Frames and Logical Theories 

2.1   The ontology 

An ontology O is a quadruple (O, A, R,ㄷ ), where 
z O is a set of concepts. We assume that O=U∪C and U∩C=∅, where U is a set of individuals, and C is a 

class of concepts;  
z A is a set of attributes. For every a∈A, there is a domain Da such that a is taken as a function from U to 

Da. We use a(x)=v to denote that individual x has value v at attribute a;  
z R is a set of relations. Without loss of generality, we assume that every relation is binary on U, that is, 

for every r∈R, r⊆U×U, and 
dom(r)={x∈U | ∃ y((x,y)∈r)}; 

range(r)={y∈U | ∃ x((x,y)∈r)}; 
z  is a binary relation on O, called the subsumption relation or is a relation. We assume that (1) is a 

partial order on O; (2) for any x, y∈U, x
ㄷ ㄷ

ㄷ y; and (3) for any α, β∈C, if αㄷ β then for any x∈U, xㄷα 
implies xㄷ β,  

and O satisfies the following condition:  

(2.1) For any α, β∈C, if α≠β then there are x, y∈U and an attribute a∈A or a relation r∈R such that either a(x) 
∈i {a(x')| x'ㄷα }, a(x)∈1−i { a(x')| x'ㄷ β }; or x∈i dom α (r)∪range α (r), x∈1−i dom β (r)∪range β (r),  

where i = 0, 1; ∈0=∉, ∈1=∈, and 
dom α (r) = {x′ㄷα | ∃ y′((x′, y′)∈r)}, 

range α (r) = {y′ㄷα | ∃ x′((x′, y′)∈r)}. 

To simplify the notation, we use x: α to denote that xㄷα if x∈U and α∈C. We assume the Leibniz law, that is, 
for any x, y∈U, x ≠ y if and only if there is an attribute a∈A or a relation r∈R such that a(x) ≠a(y); or for some z, (x, 
z)∈r and (y,z)∉r; or for some z, (x,z)∉r and (y,z)∈r. 

We can define the operations ,ㄩ  on O, where O is taken as a partial ordered structure. ㄇ

Definition 2.1. Given two α, β∈O, the greatest lower bound of α and β, denoted by α β, is a concept γ∈O 
such that γㄷα, β; and for any δ∈O, if δㄷα, β then δㄷ γ or δ=γ. 

ㄇ

The least upper bound of α and β, denoted by α β, is a concept γ∈O such that γ α, β; and for any δ∈O, if 
δコ α, β then γㄷ δ or δ=γ.  

ㄩ コ

2.2   The frames 

Assume that there is a set O of concepts, a set A of attributes and a set R of binary relations. 
A string φ of symbols is a statement if either 

φ = [a:v], 
where a∈A and v⊆Da; or  

φ = [r:u], 
where r∈R and u⊆U. 

A frame F is a set of statements such that for any a∈A, there is at most one v⊆Da such that [a:v]∈F; and for 
any r∈R, there is at most one u⊆range(r) such that [r:u]∈F. Let F be the set of all the frames. 
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We define a binary relation ≤ between frames, called the inheritance relation: given two frames F and F′, we 
say that F is a sub-frame of F', or F inherits F', denoted by F≤F′, if for any [a:v′]∈F′ there is a v such that [a:v]∈F 
and v⊆v′; and for any [r:u′] ∈F′ there is one u such that [r:u]∈F and u⊆u′. 

Corresponding to the Leibniz law, we assume that for any two frames F and F', if F≠F' and F≤F′ then there is 
at least one attribute a∈A or one relation r∈R such that either [a:v]∈F, [a:v′]∈F′ and v⊂v′; or [r:u]∈F, [r:u′]∈F' and 
u⊂u′. 

It is easily proved that ≤ is a partial order on F. We define the operations on F.  

Definition 2.2. Given two frames F and F', we define two frames, denoted by F∧F' and F∨F' as follows: 
z for any a∈A, [a:v]∈F∨F' for some v⊆Da if and only if [a:v′]∈F for some v′; [a:v″]∈F′ for some v″, 

and v=v′∪v″; 

z for any r∈R, [r:u]∈F∨F' for some u⊆U if and only if [r:u′]∈F for some u′; [r:u″]∈F′ for some u″, 
and u=u′∪u″; 

z for any a∈A, [a:v]∈F∧F' for some v⊆Da if and only if v=v′∩v″ if [a:v′]∈F for some v′ and [a:v″] 
∈F' for some v″; v=v′ if [a:v′]∈F for some v′ and [a:v″]∈F' for no v″; v=v″ if [a:v′]∈F for no v′ and 
[a:v″]∈F′ for some v″; 

z for any r∈R, [r:u]∈F∧F' for some u⊆U if and only if u=u′∩u″ if [r:u′]∈F for some u′ and [r:u″] ∈F' 
for some u″; u=u′ if [r:u′]∈F for some u′ and [r:u″]∈F' for no u″; u=u″ if [r:u′]∈F for no u′ and 
[r:u″]∈F′ for some u″. 

Proposition 2.3. For any F, F′∈F, F∧F′ and F∨F′ are the greatest lower bound and the least upper bound of F 
and F′ under ≤, respectively. 

Given a class F'′ of frames, any two frames F and F′ may not have F∧F′ and F∨F′ in F'′. Hence, we can define 
∧F'′ and ∨F'′ in F'′ as follows:   

Definition 2.4. Given two frames F and F', we define F∧F'′ F′ and F∨F ' F′ to be the greatest lower bound and 
the least upper bound of F and F′ in F'′, respectively.  

Proposition 2.5. Given a class F'′ of frames and two frames F, F′, 
F∧F'′F′≤F∧F′; 
F∨F'≤F∨F'′ F′. 

2.3   The logical theories 

Let L be a logical language containing the following symbols: (1) a set U of constants, (2) a set C of unary 
predicates, (3) a set A of unary functions, and (4) a set R of binary relations, such that for every α∈C, α⊆U; for 
every a∈A, there is a domain Da and a: U→Da; and for every r∈R, r⊆U×U. 

A string t of symbols is a term in L if 
t = x|c|v|a(t'), 

where x is a variable ; c∈U∪C; for some a∈A, v∈Da; t'∉Da. 
A string φ of symbols is a formula in L if   

φ = x: α| t: α| t=s| ψ1∧ψ2| ψ1→ψ2|∀ xψ(x), 
where x is a variable, t, s are terms, α∈C.  

A formula φ is called a sentence if there is no free variable in φ. A theory T on L is a consistent set of 
sentences. Let T  be the set of all the theories in L. 

Definition 2.6. Given two theories T and T ′ , we say that T ′  is implied logically by T, denoted by T├T ′ , if for 
every sentence φ∈T ′ , T├φ, where├ is the first order inference. T and T ′  are equivalent, denoted by T≡T ′ , if T├
T ′  and T ′├T. 
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Then,├ is a partial order on T. 
Definition 2.7. Given two theories T and T ′  in L, we define two theories T∪T ′  and T ∩T ′  as follows: 

T∪T ′=Cn(T)∪Cn(T ′ ); 
T∩T ′=Cn(T) ∩ Cn(T ′ ), 

where Cn(T) is the logical closure of T, that is, Cn(T )={φ|T├φ}.  
Proposition 2.8. For any theories T and T ′ , T∪T ′  and T ∩T ′  are the least upper bound and the greatest lower 

bound of T and T ′ , respectively. 
There are two special theories in T : T┬ and T┴, where T┬ is the inconsistent theory, and T┴ is the first order 

theory, that is, T┴={φ|├φ}, the set of first order theorems. Then, for any logical theory T, T┬├T├T┴ . 

3   The Transformations 

In this section we give the transformations from the ontology to frames and from frames to logical theories 
such that the transformations preserve the structural properties of three structures: the ontology (i.e., concepts under 

), the frames under the inheritance, and the logical theories under the logical implication. ㄷ

Proposition 3.1. Given an ontology O, there is a transformation σ: O→F which is a congruence between O and 
F, that is, for any α, β∈O, αㄷ β if and only if σ(α)≤σ(β); and  

σ(α β)=σ(α)∨ㄩ σ(O)σ(β); 
σ(α β)=σ(α)∧ㄇ σ(O)σ(β), 

where σ(O)={σ(α)|α∈O}. 
Proof.  Given a concept α∈O, define  

σ(α)={[a:v]|a∈A}∪{[r:u]|r∈R}, 
where for any a∈A, 

v={a(x)|x∈U,xㄷα}; 
and for any r∈R, 

u={y| x∈U(xㄷα∧(x,y)∈r)}. ∃

By (2.1) and the Leibniz law, σ is injective, that is, for any α, β∈O, if α≠β then σ(α)≠σ(β). 
It is a routine to verify that σ is a congruence. □ 
Proposition 3.2. Let σ(O) be the set of the frames defined in Proposition 3.1. There is a transformation τ: σ(O) 

→T which is a congruence between σ(O) and T, that is, for any F, F'∈σ(O), F≤F' if and only if τ(F)├τ(F' )/θ, and 
τ(FㄩF')=τ(F)∨τ(F'); 
τ(FㄇF')=τ(F)∧τ(F'), 

where θ is a substitution such that if F and F' are the frames for concepts α and β, respectively, then θ=β/α. 
Proof.  Given a frame F∈F for some concept α∈O, define  

τ(F)={∀ x:α(a(x)∈v)|[a:v]∈F}∪{∀ x:α ∃ y∈u((x,y)∈r)|[r:u]∈F}. 
By (2.1) and the corresponding Leibniz’s law, τ is injective, that is, for any F, F′∈σ(O), if F≠F' then τ(F)≠ 

τ(F'), that is, either τ(F) −/ τ(F')θ or τ(F') −/ τ(F)θ', where θ′=α/β. 
Given two frames F, F′ for concepts α, β, respectively, such that αㄷ β, assume that [a:v]∈F and [a:v']∈F'.  

Then, x:α(a(x)∈v), say =φ, is in τ(F) and x:β(a(x)∈v′), say =ψ, is in τ(F'). Then, φ├ψθ. By the proof of the 
above proposition, v⊆v'. Hence, 

∀ ∀

∀ x:α(a(x)∈v)├∀ x:α(a(x)∈v′); 
∀ x:β(a(x)∈v′)θ=∀ x:α(a(x)∈v′); 
φ├ψθ. □ 

Classically, the intent of a concept α is a set of properties satisfied by every instance of α. Hence, given two 
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concepts α, β, if α β, let I(α) be the intent of α, then I(α) should logically imply I(β). The transformation τ given 

in the last proposition says that I(α)

ㄷ

−/ I(β), but I(α)├I(β)θ, here, I(α)=τ(σ(α)). 

Given a concept α, we use Fα to denote σ(α), and use Tα to denote τ(Fα). We can take O, F and T as three 
categories such that 

O=(o(O),homO); 
F=(o(F ),homF ); 
T =(o(T ),homT), 

where o(O) is the set of objects in the category, and for any α, β∈o(O), homO (α,β) is a set of morphisms from α to 
β, namely, 

o(O)=O; 

              {ㄷ }, if αㄷ β 
homO (α,β)=   
             Φ,   otherwise, 

and similarly we can define o(F ), homF and o(T ), homT. 
Then, σ and τ are functors. We have the following commutative diagram: 

       
α       σ      Fα        τ           Tα  

 
              ≤             ├  ㄷ

 
β       σ       Fβ       τ            Tβ  

This diagram guarantees that an ontology, its representation and its reasoning are coincident. 

4   An Example 

In this section we use the commonly-used block world as an example to show a simple ontology, its frame and 
logical representations. 

Assume that there are five blocks {a, b, c, d, e} and a desk {D}, and every block has length v0, width v1 and 
height v2. Let M = {a, b, c, d, e, D}.  

Let O be the ontology to describe the blocks. Then,  
O = {block, desk, state, a, b, c, d, e, D};  
A = {height, width, length}; 
R = {above}, 

where 
C = {block, desk, state}; 
U = {a, b, c, d, e, D}, 

and a state is a structure s = (M, {above, top}), where 
top ⊆ M ; 
above ⊆ M × M, 

and the unary predicate top is defined such that for any x∈U, 
top(x)⇔ ¬∃y (above(y, x)).  

The state s given in the following diagram is described by such a structure s = (M, {above, top}), where  
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top = {a, c}; 
above = {(a, b), (b, D), (c, d), (d, e), (e, D)},  
 c 

a d  

b e 
                                                      D 

We assume that the ontology O includes the following set of axioms: 
T = { , ,∀x y z (above(x, y)∧above(y, z) →above(x, z)), 

∀x ( ¬ above(D, x)), 
∀x ( top(x) ↔ ∀y ( above(y, x) ) ) }. ¬

A move is an action, taken as a mapping from states to states, where the mapping satisfies the following 
condition: for any states s1 and s2, let s1 = (M, {top1, above1}) and s2 = (M, {top2, above2}), then 

|Δ(top1, top2) | = 2, 
where Δ is the symmetric difference of sets. 

We define a frame for block as follows: 
defframe :  block 
         { 

is-a :  object 
instances :  a, b, c, d, e  
attribute :  length = v0 
attribute :  width = v1 
attribute :  height = v2 
relation :  above 

           } 
and a frame for block a: 

defframe :  a 
         { 

is-a :  block 
attribute :  length = v0 
attribute :  width = v1 
attribute :  height = v2 
           } 

and a frame for block a in state s: 
defframe :  a in s 
         { 

is-a :  block 
attribute :  length = v0 
attribute :  width = v1 
attribute :  height = v2 
relation :  above(a, b), above(a, D) 

           } 
We have three theories for block, a and a in s: 

Tblock = {  ∀x : block(x : object), 
∀x : block(length(x) = v0),  
∀x : block(width(x) = v1), 
∀x : block(height(x) = v2)}; 

Ta = {  a : block, 
length(a) = v0,  
width(a) = v1,  
height(a) = v2}; 

Ta in s = {   a : block, 
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length(a) = v0,  
width(a) = v1,  
height(a) = v2,  
above(a, b),  
above(a, D)}. 

The descriptions given above seem too simple, because they are just the descriptions of objects. In fact, the 
descriptions become much complicated when we consider processes, where we should use the types to distinguish 
the objects, processes, actions, states, etc. 

The frame for state is given as follows: 
defframe :  state 
         { 

is-a :  process 
haspart :  universe M 
haspart :  relation : top 
haspart :  relation : abo ev  

axiom:  ∀x ∈M (x: σ ∨ x : τ); 
top⊆M ;  
above⊆M × M; 
∀x ∈M ( x: τ → x∈top ); 
∀x ∈M ( x∈top → ¬∃ ∈y M ((y, x) ∈above) ); 

,∀x y∈M ( x: σ ∧ y : τ → (y, x) ∈above ); 
,∀x y∈M ( (x, x)∉ above ); 
,∀x y, z∈M ( (x, y) ∈above∧ (y, z) ∈above → (x, z) ∈above ); 
,∀x y∈M ( (x, y) ∈above → (y, x) ∉above ) 

} 
and the frame for s : 

defframe :  s 
         { 

is-a :  state 
haspart :  M = {a, b, c, d} 
haspart :  top = {a, c} 
haspart :  above = {(a, b), (a, D), (b, D), (c, d), (d, D)} 
          } 

5   Conclusions and Further Work 

Taking an ontology O as a structure, i.e., O = (O, ㄷ ), we define the corresponding logical theory T(O) as 
T(O) = { ∀x ( x: α →x: β), ( y: β∧∃y ¬y : α) | αㄷ β}∪{Tα | α∈O }. 

We can prove by the quantifier elimination that any statement in O can be proved in T(O). Hence, any proposition 
holding in ontology O can be implied logically in T(O), and any proposition implied logically in T(O) is a 
proposition holding in O. 

The transformations σ from an ontology to frames and τ from frames to logical theories, hence, the composition 
τσ of σ and τ, are structural-property-preserving. This ensures that the representation of concepts in an ontology by 
using frames is faithful; and the transformation from frames to logical theories is faithful. 

The definitions of ontologies and the subsumption relation (frames and the inheritance relation) compose of the 
presuppositions on ontologies (on frames), and under the presuppositions the faithfulness and fullness of the 
transformations are proved so that the inference in frame- or ontology-represented knowledge bases is correct. 
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Call for Papers 
ICSE 2006 Workshop 

2nd International Workshop on Advances and Applications of Problem Frames (IWAAPF 2006) 
Shanghai, China - May 23rd, 2006 

Problem Frames are a promising approach to early life-cycle software engineering. Their focus moves the engineer back to the 
problem to be solved rather than forward to the software and premature solution of a poorly defined problem. The influence of the 
Problem Frames approach and related work is spreading in the fields of domain modelling, business process modelling, requirements 
engineering, and software architecture as well as in software engineering in general. The 2nd International Workshop on Advances and 
Applications of Problem Frames will continue the success of IWAAPF 2004, held at ICSE 2004. IWAAPF 2004 attracted 35 attendees and 
resulted in a highly successful workshop, one major outcome being a special issue on Problem Frames of the international journal 
Information and Software Technology. 

Workshop Objectives 
- To understand and improve upon the current state of practice of the Problem Frames approach in industry, research and education. 
- To report on the investigation and development of new applications for Problem Frames. 
- To report on the empirical evaluation of the Problem Frames approach. 
- To continue to bring the Problem Frames research and practice communities closer together. 
Submissions 
All submitted papers must involve or address or consider the Problem Frames approach. We would especially encourage real world 

application and experience of problem frames. Papers should relate to, but are not restricted to, the following topics: foundations of 
Problem Frames, Problem Frames and requirements quality, applications of Problem Frames, Problem Frames for describing business 
needs, Problem Frames within software development processes, relating problem and solution structures via Problem Frames, empirical 
and comparative evaluations of Problem Frames, feature-based development with Problem Frames. 

Papers should be submitted electronically in pdf format to J.G.Hall@open.ac.uk. Subject line should read: “IWAAPF’06 submission”. 
 Paper Formats and Evaluation 

We invite: 
1. Full research papers (IEEE format, 10 sides max.) 
2. Short papers  
a. Industry experience papers (IEEE format, 6 sides max.) 
b. Research position papers (IEEE format, 6 sides max.) 
All papers will be peer reviewed by members of the program committee. Detailed review comments will be returned to authors on the 

notification date. 
The IWAAPF workshop proceedings will be published together with the ICSE conference proceedings. 
Important dates  
Submission deadline: 8th January 2006 
Author notification: 12th February 2006 
Camera-ready copies: 8th March 2006 
Workshop Organisers and Program Co-Chairs 
Jon Hall, Computing Research Centre, The Open University, UK, J.G.Hall@open.ac.uk (principal organiser) 
Lucia Rapanotti, Computing Research Centre, The Open University, UK, L.Rapanotti@open.ac.uk  
Karl Cox, National ICT Australia Ltd., karl.cox@nicta.com.au 
Local co-ordinator: Jin Zhi, The Chinese Academy of Sciences, China, zhijin@amss.ac.cn 
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