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Abstract: A novel class of subdivision schemes based on the hexagonal meshes is presented. It is called
honeycomb subdivision which enlarges the field of subdivision surfaces. By introducing the concept of central
control vertices into the schemes, the honeycomb subdivision has the advantages of flexible coefficients selection,
easy control of shape, less complexity of large meshes, and applicability. Its properties are analyzed and appropriate
subdivision rules are given to obtain limit surfaces with tangent continuity. It can interpolate the given control
vertices under certain conditions. The schemes are applicable for shape modeling in computer animation and
industrial prototype design.
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Complicated surface modeling and rendering are huge challenges in computer graphics. Recently, the
subdivision surfaces, due to their unique simple calculation and arbitrary topological modeling ability, become the
one of the research hotspots in the computer graphics realm, and have been widely accepted in the computer
animation applications. Generally, subdivision surfaces are obtained as the limit of a recursive split and refinement
process applied to initial polygonal mesh. By selecting suitable refinement masks we can achieve special geometric
continuity. There are several typical types algorithm in the literature: Catmull-Clark’s'! and Doo-Sabin’s'? uniform
B-spline tensor product extended subdivision schemes; Loop's box spline extended subdivision schemes®; the
famous butterfly algorithm!¥! and K obbelt’s interpolatory schemes™, based on four point algorithm; and recently the

/3 -suubdivision'®. Doo and Sabin'@, Ball and Storry!”), Halstead and his cooperators®, and Reif et al.!, worked

on strict mathematics analysis of the local limit properties of subdivision surfaces, and developed several optimal
smooth subdivision rules. In the current researches, various new methods are created and many modern techniques
are employed. But from our viewpoint and analysis there are three key problems in subdivision algorithms, which
greatly arouse our interesting.

Firstly, all subdivision schemes are based on quadrangular or triangular mesh till now. Though they are simple
and natural, there are still a kind of mesh, hexagonal mesh, in the nature, e.g., honeycomb and snowflake. The
hexagon, always act as a reasonable approximation of ellipse and circle, can be used in texture synthesize and
texture mapping, wavelet and finite element analysis. Moreover, notice if the 2D plan is seamless covered without
overlap by regular polygons, the only three choices are regular triangle, square and regular hexagon. So the
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importance of hexagonal mesh is self-evident. On the other hand, it is well known that the dual operator is a key
operator in subdivision schemes. The famous Doo-Sabin scheme can be viewed as a combination of bisection and
dual operation over original meshes. In a triangular mesh, every regular vertex has the valence 6, and the polygons
on the dual mesh are mostly hexagonal. Thus some questions may be naturally putted forward as follows: How to
develop reasonable subdivision schemes over hexagona based mesh? And how about the continuity of the limit
surfaces relative to the special subdivision rules? But there are few papers that discussed the hexagonal based
subdivision surfaces. They are not the simple extension of existing subdivision schemes. In fact, the topological
structure of meshes greatly influences the subdivision results. In Ref.[10], Zorin pointed out that some triangular
meshes may result in fairless shapes by employing quad meshed based Catmull-Clark scheme, with large numbers
of irregular vertices. The main reason is that the regular cases of different subdivision schemes are different. Thus, it
is necessary for us to research the special reasonable schemes over hexagona meshes to reach the requirements for
computer animation and industrial modeling.

Secondly, several researchers have gone deep into the mathematics analysis of the continuity and smoothness
of the subdivision surface. But many of their results are generic or limited in the traditional subdivision rules. For
instance, Reifl” gave a theoretical framework of local analysis. However, the new subdivision schemes,
distinguished from the classical schemes, do not fit the conditions given by Ref.[9]. Moreover, when more
coefficients are added, the precise representation of eigein-structure of subdivision matrix is hard to be obtained,
which cause the analysis difficulty. But in our hexagonal subdivision schemes, the eigenvalues still can be precisely
computed out by applying some transforms and due to the good properties of the circulant matrix. And from this, we
can determine the coefficients to reach the tangent continuity for the limit subdivision surface.

Thirdly, the traditional subdivision schemes based on the bisection discrete algorithms of uniform spline have
relative fixed coefficient. Thus the result shapes are relative fix. But in computer animation modeling, especially in
the biology modeling, the main principle is that lifelikeness models do not have to much fair and just act in their
natural way. The origina Catmull-Clark algorithm, always creates surfaces which seem much artificial and
unnatural. This makes users have to do more post-processing for bump effects. So we introduce the central control
vertices into our scheme. By the controls of them, combined with the neatly coefficient tuning and the level of
details, the artificial problem are well solved.

In this paper we first review some terms and conceptions in the subdivision schemes. Then we give a set of
subdivision topological rules over hexagonal meshes and the geometric smooth coefficients based on the continuity
and limit properties of the subdivision surface. Finally, we list some discussions of implementation and several
examples are shown in section 4. As the faces of the initial mesh used in our algorithms are mostly hexagonal, we
call them honeycomb meshes, and relative schemes are called honeycomb subdivision.

1 Honeycomb Mesh

In graph theory, a polygonal mesh can be viewed as a simple graph G=G(V,E) defined on a hone-empty
vertex set V ={v, |iel}and an edge set E={g;,...,6.}, where edge ¢, ={v,,v;} . Then the valence of a vertex is

the number of vertices connected to it, i.e, Valence(vi):l{vi|(=.%j eE}|. A polygona face F(V,E) in G is a

sub-graph which only has one connected branch, and the valence of each vertex is 2. The valence F(V,E) of isthe
number of its vertices, and it is obviously equal to the number of its edges. If the valence of each face in graph
G(V,E) is6, thenitis called a hexagonal mesh, or a honeycomb mesh. Similarly, we say it is a triangular mesh if

all faces are valence 3, and a quad mesh if valence 4. For convenience, we imprecisely say it is an n-mesh if in
which most faces are valence n. The set of vertices in the faces which contain the vertex v is called the
1-neighborhood of v, denoted by N, (V) .

© PEBSFERSAIIFT hipd/ www. jos. org. cn



1201

NFF

‘ O Original control vertex
S © Original control central
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(including NFCV and NVCV)

Original Mesh Mesh after subdivision
Fig.1 Topological rules of the honeycomb subdivision

Givenamesh G=G(V,E), we can construct a new mesh(graph), in which the vertices is corresponding to the
original faces, and the edges are defined as the connectivity of the faces. The new mesh is called the dual graph of
original mesh. Obviously, each vertex in the original mesh is corresponding to aface in the dual mesh and they have
the same valence. It is well known that to seamlessly cover the %2 parameter plane without overlapped by regular
n-polygon, the choice can only be 3, 4 and 6. In the square case, since each vertex is valence 4, the dua is till a
quad mesh. In the regular triangle case, the dual of the infinite covering mesh is a honeycomb mesh, and applying
the dual operator twice will make it come back to a triangular mesh. This is the base viewpoint of our algorithm. In
honeycomb meshes, the valence 6 vertex is called regular vertex, otherwise it isan irregular vertex.

2 Honeycomb Subdivision

For simplicity, assume the given arbitrary topological mesh has no boundary and has only one connected
branch, for the multi-branch case it can be viewed as a combination of independent subdivision operations on each
branch. Distinguished from triangular mesh, the faces of the honeycomb mesh can not guarantee to be coplanar. So
we introduce the central control vertex, denoted CCV, into our algorithm to improve the shape control and rendering
abilities. In the later sections, we will discuss the importance of CCV.

2.1 Topological subdivision rules and their properties

The topological subdivision rules (see Fig.1) are:
1) Intheorigina mesh, on every face, create a new edge vertex for each edge, denoted by NEV, which isa
linear combination of two end points of the edge and the CCV of the face.
2) Intheoriginal mesh, on every face, create a new face, denoted by NFF, by connecting the corresponding
NEVs of its edgesin turn.
3) Intheoriginal mesh, for each edge, create a new face, denoted by NVF, which is composed of the NEV's
of al faces around it.
4) Inthe new mesh, for each face, create a new central control vertex, denoted NCCV. We denote NVCCV
and NFCCV for the CCV of NVF and NFF respectively.
By applying the topological rules, we note that each face and vertex in the old mesh generates a new face, and the
NCCVs(new central control vertices) are produced from the vertices and the CCV's of the old mesh.
For a given closed mesh M (E,V,F) , let V be the vertex set, let E be the edge set and F be the face set. The
Euler’s formula asserts that
V-E+F=C, 1)
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where C is a constant determined by the topological properties of the given mesh. Table 1 lists the topological
parameters changes after applying one-step operation of several typical subdivision schemes. From this table, we
can find out that our scheme is the same as other schemes. That is the topological properties are invariant during the
subdivision operation though new geometric elements are added for creating the new mesh. It is a necessary
characteristic in practical applications. On the other hand, the increasing speed of the geometric elements in our
scheme is slower than others. It makes the user more easily manipulate the processing meshes and improves the
ability of detail control.
Table1l Subdivision schemes and topologic parameters

Scheme Vertex Edge Face Topological constant
Honeycomb 2|E| 3IE| VI+|F]| C
Catmull-Clark [VI+|E|+|F| 4|E| 2|E| C
Doo-Sabin 2|E| 4IE| [VI+|E|+|F| C
Loop/Butterfly VI+|E] 2|E[+3|F] A|F| C

Moreover, after one step of our scheme, all control vertices, definitely been new edge vertices, are valence 3,
for it is only connected with the other new edge vertex of the corresponding edge, and the two neighbor new edge
vertices of the corresponding same old face. The valence of NVF(new vertex face) is twice of the valence of the
corresponding vertex, and the valence of NFF(new face face) is fixed. Hence, after two steps, the most faces of
mesh are hexagonal, the number of non-hexagonal faces is the sum of the number of irregular vertex and the
number of non-hexagonal faces, and it will be fixed in the next subdivision steps.

2.2 Geometric refinement rules

To design new schemes, the geometric refinement rules are much important. Popularly, the scheme must have
the appropriate support, i.e., the influence area of vertices shall be small. Furthermore, the scheme shall have some
kind of symmetry which will take effects to the limit surface of subdivision. Let P[q;p1,p.,....pn] be a polygonal face
p with valence n on the original mesh, where g is the central control vertex and py,p,,...,pn are the vertices of P.
Applying one step of subdivision, we calculate the new edge vertex NEV of P by

' |+ 1+
pr=(-b)a+p AR v
and the new face central vertex NFCV of P is
g'=(1-a)a+a,p, ©)]

here the weights a,,b, €[0]], the P isthe barycenter of P,i.e, p= Zi":l p./n(SeeFig.2). Let v be avertex with
valence n in the original mesh, then the new central control vertex of corresponding NVF is computed by

q:(l_cn)v+cn|:iaipl+iﬂiqi:|’ 4

with c,,a,,f, <[0] and Zinzl(ai +4)=1, herethe p isthe ith vertex connectedtov, and ¢ isthe CCV of
F; who contains v (see Fig.3).

3 Limit Properties of Honeycomb Subdivision Schemes

3.1 Eigenvalue analysis of subdivision matrix

From the last section, we can see the faces on the mesh shrinking after subdivision, and the old vertices
correspond to new created faces. Additionally, the NEV's and NFCCV in an NFF are only determined by the control
vertices in the corresponding old face. Thus to investigate the local limit properties, we only consider the influence
to a given n-sided face P for our subdivision scheme. Let q be face P's CCV, pi,p.,...,.pn be its vertices,
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Fig.2 New edge vertex (NEV) and new face Fig.3 New vertex central control vertex
central control vertex (NFCCV) (NVCCV)

and we still denote P :[q, P Pose- s pn]T to be a column vector represented the control vertex series without
confusion. Then we can write out following formula

P'=SP. ©)
where P/=[q’, P Pyl p;]]T is the control vertex series of the new face P’ and

l1-a, a,/n a,/n a/n - a,/n

i-b, b/2 b/2 0 - 0
S={1-b, 0 Bb/2 b/2 - O (6)
1-b, b/2 0 0 - b/2

is the subdivision matrix. From the results of Reifl®, we only need to analyze the eigenvalues of S, because of
the local invariance of honeycomb subdivision. For convenience, we introduce the symbol of circulant matrix

a a - a
Cir(a,,a,,...,a,):= a” .a.ll a’:’l : 7)
a2 33 ces a1

After one step subdivision, the polygonal faces will rotate while shrinking. It naturally forms the edge-vertex

correspondence. For easily analysis, same as the \/5 -subdivision'™, we consider the double step subdivision matrix
and adjust its rows to rebuild vertex-vertex correspondence. So we select

b, f
S=RSS=| : 8
: Cir (M, gosls 10, 9n) ?
fn
where
p— — 2 —_
dn—(i a,) ;an(ll b,), 10 - 0
fn—(l—aﬁbn)f? 2' 00 01
n=1-a,+b,)( _zn)' R=l0 1 0
hn:an(l_bn)/n+bn/4’ . i
B B 2 . . . . .
g, =2a,(1-b)/n+b?/2, 00..10
l,=a,1-b,)/n,

By the properties of circulant matrix, it is easy to know that the eigenvalues are
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P B
Fig. 4 Rotation of the edge vertices Fig. 5 Applying honeycomb subdivision on dodecagon
1(a, —bn)z,lbﬁ[u cos(an)},lbnz[H cos(ZHE)},...,lbnz[H Cos(27zn—_1)} , @)
2 nJ|2 n 2 n

Imitating the discussions of Reifl®, the limit surface depends on the eigen-structure of S .To reach the tangent
plane continuity, the eigenvalues must satisfy

Ado=1>4=2,>25...> 2, (10)

Now we analysis the selections of weights a, and b, for agivenn. Firstly, we always assumethat 0<a,,b, <1

to guarantee that all cases are convex linear combinations. Then the largest eigenvalue of S is1. Let ¢, =27/n,

and note cos(je,) =cos((n— j)e,) , So the second largest eigenvalue must be bZ[1+cose,]/2. It follows

(a,-b,)* <3h[1+cosp,], (11)
i.e.,
cos(g,/2) cos(¢,/2)
Troosp 1) "~ T-cosp,12) ™ (12)

Thus we can pick some special sets of weight coefficients for practice applications:

e To obtain a symmetric mask, we pick b, =2/3 and the new edge vertex will be the barycenter of the
triangle composed by two old edge vertices and the central control vertex. Then pick a, = (4—cosg,)/9to be similar
to /3 -subdivision. Figure 5 shows a demo by applying honeycomb subdivision on dodecagon in this set of

weights.
e Simply choose a,=b, =const.

3.2 Limit points of honeycomb subdivision scheme

From last subsection, we find out that the position of the limit point corresponded to the original central vertex
is a limit value of the linear combinations of the original face's barycenter and the central vertex. So by the new

s@) (1-a, a)(p
(S(p)J_[l—m bn](qj’ @3

vertex generation formulas, we have

and
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(-b)+a,(b,-a)" a@-(b,-a)")

[Sm(q)}_ 1+an_bn 1+an_bn [pJ (14)
S'(M) | @-b)A-(b,-a)") & +(@-b)b,-a)" \d
1+a,-b, 1+a,-b,
As |a,—b|<1, it follows
S @)= gD (15)

1+a,-b, = 1+a —b, P
Thus, the limit point is lying on the line segment of the original face's barycenter and the central vertex. It is
beneficial to user interface design.

4 Implementation Details and Discussions

4.1 Data structure

In our experimental system, we exploit the extended semi-edge structure as the base storage data structure,
which is frequently used in CAD and computer animation system. The semi-edge structure, which stores lots of
relationship information of vertices, edges and faces, is efficient in edge-vertex, vertex-face and edge-face search
processing. It makes the 1-neighborhood search subroutines much fast in our algorithm implementation. Due to the
dual property of the data structure, we can fast create the dual mesh. Furthermore, the data importing and exporting
are implemented in our system for data exchanging with other CAD or computer animation systems.

4.2 Boundaries

In practical animation and industrial applications, it is usually necessary to be able to process control meshes
with well-defined boundary which should result in surfaces with user satisfied boundary curves. But the
1-neighborhood of boundary vertex isincomplete, or in other words, the information is deficient. So we must define
special boundary subdivision rules. In our implementation, for a given boundary vertex, if the valence is greater
than 2, then add a new edge vertex into the new vertex face, with the formula

Wity

2
where the weight s, €[0,1] is a function of n and v,,v, are two connected boundary vertices with v. In

v, =(L-s)V+s, (16)

practice, it produces satisfied visual results.
4.3 Selections of NCV

The central control vertex isvital in our subdivision scheme, sinceit is akey factor of the limit surface shapes.
For the traditional original polygonal meshes have no central control vertex, it gives our scheme additional
freedoms to choose central control vertices. If we choose the CCV of a given face on the original mesh to be the
barycenter of it, the limit surface will interpolate the vertex due to the limit point property derived from last section
and will result in the expectable shapes. Oppositely if we choose the CCV to be far from the barycenter of the given
face, the limit shape will seem much strange and artistic.

The new vertex central control vertex NVCCV generated from subdivision process is also a freely adjustable
factor. Especially when the original mesh is relatively simple, it will highly affect the surface shapes. Refer to
formula (4), if we select ¢,=0, i.e., the NVCCV is superposed with the original vertex, the final shape will more
approximate to the original mesh. And if we select ¢,=1, i.e., the NVCCV is the convex linear combination of the
vertices and the CCVs in the 1-neighborhood, then the final shape will relatively contract more. Through the

© PEBSFERSAIIFT hipd/ www. jos. org. cn



1206 Journal of Software 2002,13(7)

- - —

c,=0.25 ¢, =0.50 c,=0.75 c,=1.00
Fig.6 Shape changeswiththe c, switchingfromOto1l

adjustment of c,, user can properly control the fairness and approximation of the limit surfaces. Figure 6
demonstrates the changes of the limit surface shapes of a unit cube by applying the honeycomb scheme, with the c,
switching from O to 1.

4.4 Mesh converting

The arbitrary topological mesh can be used in honeycomb subdivision. For a triangular mesh, we take some
preprocess to convert it to an appropriate mesh for our algorithm. A simple way is to process dual operator. The
other polygonal meshes including quadrangular meshes can directly process honeycomb subdivision. Furthermore,
we implement the hybrid subdivision operators by integrating the typical subdivision schemes. This method highly
extends the modeling ability of solo subdivision schemes and it is significant for complicated surface modeling.

The converting from honeycomb mesh to other mesh types is flexible. When the mesh is coarser, it is easy to
create a triangle mesh by connecting the vertices of face with the corresponding central control vertices. If the mesh
becomes dense, the better way is to process one step of dual operator, since after more than two steps of honeycomb
subdivision, the vertices on the mesh are valence 3. It creates fewer triangles than the former. Because of the density
of the mesh, the converting makes little changes. Additionally, for the dual operator is a kind of smoothing on the
mesh, it improves the fairness of the result. Similarly, by applying more than two steps, the most polygonal faces
are even sides, the practical way isto connect the every vertex on the face with the central control vertex of the face
to construct a quadrangular mesh.

5 Examplesand Comparison

Obey the scheme in this paper, we have done several experiments on our system, and it gives good results, see
Figs.7 and 8. Figure 7 is a comparison between the honeycomb subdivision and the Catmull-Clark schemes. It is
easy to find out that the honeycomb subdivision is susceptive to the local stretch and irregular cases, and it can
produce some goffers as shown in Fig.7(c)(d). Since it gives more lifelikeness results, it is suitable for biology
modeling. Moreover, because of the strong control abilities of CCV's, we can append more level of details into the
models by perturbing the CCV's and it produces particular dump effect, see Fig.7(e).

6 Conclusions

This paper presents a hovel hexagonal mesh based subdivision scheme, named honeycomb subdivision. It has
many advantages such as the flexible coefficients selection, the convenience of shape control, the slower increase of
the mesh complexity, and the fargoing applicability. Moreover, it can produce the interpolatory effects by choosing
specia coefficients. Honeycomb subdivision can process on types of mesh very well. It extends the polygonal mesh
based complicated surface modeling methods. The scheme is applicable for animation modeling and industrial
prototype design. Due to its flexibility, future works should aim at the applications of it. We will further investigate
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Fig.7 The comparison of subdivision schemes. (a) the original mesh, (b) the result of Catmull-Clark schemes,
(c) the result of Honeycomb schemes, (d) alocal zoom view of (c), (e) the result after perturbing the CCV's

(a) The fighter model (b) The Triceratops

Fig. 8 Honeycomb subdivision examples

the interpolatory algorithm to interpolate the given point set, the sophisticated boundary constraints and the
accelerating rendering algorithms based on subdivision method.
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