Vulnerability Scanner Enhancement Framework Based on JavaScript Code Analysis
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The black-box vulnerability scanner is an essential tool for Web application vulnerability detection, capable of identifying potential security threats effectively before a Web application is launched, thus enhancing the overall security of the application. However, most current black-box scanners primarily collect the attack surface through user operation simulation and regular expression matching. The simulation of user operations is vulnerable to interception by input validation mechanisms and struggles with handling complex event operations, while regular expression matching is ineffective in processing dynamic content. As a result, the scanner cannot effectively address hidden attack surfaces within JavaScript code or dynamically generated attack surfaces, leading to suboptimal vulnerability detection in some Web applications. To resolve these issues, this study proposes a JavaScript Exposure Scanner (JSEScan), a vulnerability scanner enhancement framework based on JavaScript code analysis. The framework integrates static and dynamic code analysis techniques, bypassing form validation and event-triggering restrictions. By extracting attack surface features from JavaScript code, JSEScan identifies attack surfaces and synchronizes them across multiple scanners, enhancing their vulnerability detection capabilities. The experimental results demonstrate that JSEScan increases coverage by 81.02% to 242.15% compared to using a single scanner and uncovers an additional 239 security vulnerabilities when compared to multiple scanners working concurrently, showing superior attack surface collection and vulnerability detection capabilities.

    Reference
    Related
    Cited by
Get Citation

况博裕,朱焱,杨善权,苏铓,周永彬,付安民.基于JavaScript代码分析的漏洞扫描器增强框架.软件学报,,():1-19

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 24,2025
  • Revised:April 21,2025
  • Adopted:
  • Online: September 28,2025
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063