Efficient Privacy-preserving Inference Based on Secret Sharing for Convolutional Neural Network
Author:
Affiliation:

Clc Number:

TP309

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In privacy-preserving inference using convolutional neural network (CNN) models, previous research has employed methods such as homomorphic encryption and secure multi-party computation to protect client data privacy. However, these methods typically suffer from excessive prediction time overhead. To address this issue, an efficient privacy-preserving CNN prediction scheme is proposed. This scheme exploits the different computational characteristics of the linear and non-linear layers in CNNs and designs a matrix decomposition computation protocol and a parameterized quadratic polynomial approximation for the ReLU activation function. This enables efficient and secure computation of both the linear and non-linear layers, while mitigating the prediction accuracy loss caused by the approximations. The computations in both the linear and non-linear layers can be performed using lightweight cryptographic primitives, such as secret sharing. Theoretical analysis and experimental results show that, while ensuring security, the proposed scheme improves prediction speed by a factor of 2 to 15, with only about a 2% loss in prediction accuracy.

    Reference
    Related
    Cited by
Get Citation

白浩,何琨,陈晶,赵陈斌,杜瑞颖.基于秘密分享的高效隐私保护卷积神经网络预测.软件学报,,():1-13

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 11,2024
  • Revised:March 17,2025
  • Adopted:
  • Online: September 28,2025
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063