Survey on High-dimensional Bayesian Optimization
Author:
Affiliation:

Clc Number:

TP311

  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Bayesian optimization is a technique for optimizing black-box functions. Due to its high sample utilization efficiency, it is widely applied across various scientific and engineering fields, such as hyperparameters tuning of deep models, compound design, drug development, and material design. However, the performance of Bayesian optimization significantly deteriorates when the input space is of high dimensionality. To overcome this limitation, numerous studies carry out high-dimensional extensions on Bayesian optimization methods. To deeply analyze research methods of high-dimensional Bayesian optimization, this study categorizes these methods into three types based on assumptions and characteristics of different kinds of work: methods based on the effective low-dimensional hypothesis, methods based on additive assumptions, and methods based on local search. Then, this study elaborates on and analyzes these methods. This study first focuses on analyzing the research progress of these three types of methods. Then, the advantages and disadvantages of each method in the application of Bayesian optimization are compared. Finally, the main research trends in high-dimensional Bayesian optimization at the current stage are summarized, and future development directions are discussed.

    Reference
    Related
    Cited by
Get Citation

陈泉霖,陈奕宇,霍静,曹宏业,高阳,李栋,郝建业.高维贝叶斯优化研究综述.软件学报,,():1-28

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 09,2023
  • Revised:April 08,2024
  • Online: March 05,2025
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063