Intelligent Traffic Flow Prediction for Data Scarcity Scenarios
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Traffic flow prediction is an important foundation and a hot research direction for traffic management in intelligent transportation systems (ITS). Traditional methods for traffic flow prediction typically rely on a large amount of high-quality historical observation data to achieve accurate predictions, but the prediction accuracy significantly decreases in more common scenarios with data scarcity in traffic networks. To address this problem, a transfer learning model is proposed based on spatial-temporal graph convolutional networks (TL-STGCN), which leverages traffic flow features from a source network with abundant data to assist in predicting future traffic flow in a target network with data scarcity. Firstly, a spatial-temporal graph convolutional network based on time attention is employed to learn the spatial and temporal features of the traffic flow data in both the source and target networks. Secondly, domain-invariant spatial-temporal features are extracted from the representations of the two networks using transfer learning techniques. Lastly, these domain-invariant features are utilized to predict the future traffic flow in the target network. To validate the effectiveness of the proposed model, experiments are conducted on real-world datasets. The results demonstrate that TL-STGCN outperforms existing methods by achieving the highest accuracy in mean absolute error, root mean square error, and mean absolute percentage error, which proves that TL-STGCN provides more accurate traffic flow predictions for scenarios with data scarcity in traffic networks.

    Reference
    Related
    Cited by
Get Citation

李云,高雅,姚枝秀,夏士超,吴广富.面向数据稀缺场景的智能交通流量预测.软件学报,,():1-15

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 12,2023
  • Revised:March 15,2024
  • Adopted:
  • Online: November 18,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063