Abstract:Traffic flow prediction is an important foundation and a hot research direction for traffic management in intelligent transportation systems (ITS). Traditional methods for traffic flow prediction typically rely on a large amount of high-quality historical observation data to achieve accurate predictions, but the prediction accuracy significantly decreases in more common scenarios with data scarcity in traffic networks. To address this problem, a transfer learning model is proposed based on spatial-temporal graph convolutional networks (TL-STGCN), which leverages traffic flow features from a source network with abundant data to assist in predicting future traffic flow in a target network with data scarcity. Firstly, a spatial-temporal graph convolutional network based on time attention is employed to learn the spatial and temporal features of the traffic flow data in both the source and target networks. Secondly, domain-invariant spatial-temporal features are extracted from the representations of the two networks using transfer learning techniques. Lastly, these domain-invariant features are utilized to predict the future traffic flow in the target network. To validate the effectiveness of the proposed model, experiments are conducted on real-world datasets. The results demonstrate that TL-STGCN outperforms existing methods by achieving the highest accuracy in mean absolute error, root mean square error, and mean absolute percentage error, which proves that TL-STGCN provides more accurate traffic flow predictions for scenarios with data scarcity in traffic networks.