Multi-label Text Classification Method Based on Feature-fused Dynamic Graph Network
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Multi-label text classification aims to assign several predefined labels or categories to text. To fully explore the correlations among labels, current methods typically utilize a label relation graph and integrate it with graph neural networks to obtain the representations of label features. However, such methods often overly rely on the initial graph construction, overlooking the inherent label correlations in the current text. Consequently, classification results heavily depend on the statistics of datasets and may overlook label-related information within the text. Therefore, this study proposes an algorithm for multi-label text classification based on feature-fused dynamic graph networks. It designs dynamic graphs to model label correlations within the current text and integrates feature fusion with graph neural networks to form label representations based on the current text, thus achieving more accurate multi-label text classifications. Experimental results on three datasets demonstrate the effectiveness and feasibility of the proposed model as it shows excellent performance in multi-label text classifications.

    Reference
    Related
    Cited by
Get Citation

黄靖,陶竹林,杜晓宇,项欣光.基于特征融合动态图网络的多标签文本分类算法.软件学报,,():1-13

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 09,2023
  • Revised:January 04,2024
  • Adopted:
  • Online: December 11,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063