Abstract:In the field of model-based diagnosis, all minimal hitting sets (MHSs) of minimal conflict sets (MCSs) are the candidate diagnoses of the device to be diagnosed, so the calculation of MHS is a key step for generating candidate diagnoses. MHS is a classic NP-hard constraint solving problem. The bigger the problems get, the harder it becomes exponentially to solve them. Boolean algorithm is typical in calculating MHS. However, in the process of solving, most of the runtime is taken up by the minimization of the intermediate solution sets. This study proposes BWSS (Boolean with suspicious sets) algorithm combined with suspicious set clusters for calculating MHS. By analyzing the spanning tree rule of Boolean algorithm in depth, the set that causes the candidate solution to become a superset is found. When extending elements to the root node, the candidate solution, if discovered to share at least one empty set with the suspicious set cluster, shall be minimal. Otherwise, the solution will be removed. The recursive strategy will be employed to ensure that all and only MHS are generated at the end of the algorithm. In addition, each candidate solution has at least m (m≥1) elements or even the entire solution in no need of complex minimization. Theoretically, BWSS algorithm is far less complex than Boolean algorithm. According to random data and mass reference circuit data, experimental results show that compared with many other state-of-the-art methods, the proposed algorithm reduces several orders of magnitude in runtime.