Hybrid Data Augmentation Framework Based on Controllable Explanation
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Previous pre-trained language models (PLMs) have demonstrated excellent performance in numerous tasks of natural language understanding (NLU). However, they generally suffer shortcut learning, which means learning the spurious correlations between non-robust features and labels, resulting in poor generalization in out-of-distribution (OOD) test scenarios. Recently, the outstanding performance of generative large language models (LLMs) in understanding tasks has attracted widespread attention, but the extent to which it is affected by shortcut learning has not been fully studied. In this paper, the shortcut learning effect of generative LLMs in three NLU tasks is investigated for the first time using the LLaMA series models and FLAN-T5 models as representatives. The results show that the shortcut learning problem still exists in generative LLMs. Therefore, a hybrid data augmentation framework is proposed based on controllable explanations as a mitigation strategy for the shortcut learning problem in generative LLMs. The framework is data-centric, constructing a small-scale mix dataset composed of model-generated controllable explain data and partial original prompting data for model fine-tuning. The experimental results in three representative NLU tasks show that the framework can effectively mitigate shortcut learning, and significantly improve the robustness and generalization of the model in OOD test scenarios while avoiding sacrifice of or even improving the model performance in in-distribution test scenarios. The solution code is available at https://github.com/Mint9996/HEDA.

    Reference
    Related
    Cited by
Get Citation

孙泽辰,肖义胜,李俊涛,张民,周国栋.基于可控性解释的混合数据增强框架.软件学报,,():1-16

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 18,2023
  • Revised:February 03,2024
  • Adopted:
  • Online: June 20,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063