Task Knowledge Fusion for Multimodal Knowledge Graph Completion
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The task of completing knowledge graphs aims to reveal the missing fact triples within the knowledge graph based on existing fact triples (head entity, relation, tail entity). Existing research primarily focuses on utilizing the structural information within the knowledge graph. However, these efforts overlook that other modal information contained within the knowledge graph may also be helpful for knowledge graph completion. In addition, since task-specific knowledge is typically not integrated into general pre-training models, the process of incorporating task-related knowledge into modal information extraction becomes crucial. Moreover, given that different modal features contribute uniquely to knowledge graph completion, effectively preserving useful multimodal information poses a significant challenge. To address these issues, this study proposes a multimodal knowledge graph completion method that incorporates task knowledge. It utilizes a fine-tuned multimodal encoder tailored to the current task to acquire entity vector representations across different modalities. Subsequently, a modal fusion-filtering module based on recurrent neural networks is utilized to eliminate task-independent multimodal features. Finally, the study utilizes a simple isomorphic graph network to represent and update all features, thus effectively accomplishing multimodal knowledge graph completion. Experimental results demonstrate the effectiveness of our approach in extracting information from different modalities. Furthermore, it shows that our method enhances entity representation capability through additional multimodal filtering and fusion, consequently improving the performance of multimodal knowledge graph completion tasks.

    Reference
    Related
    Cited by
Get Citation

陈强,张栋,李寿山,周国栋.融合任务知识的多模态知识图谱补全.软件学报,,():1-14

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 25,2023
  • Revised:November 03,2023
  • Adopted:
  • Online: July 03,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063