Malicious Node Detection Based on Semi-supervised and Self-supervised Graph Representation Learning
Author:
Affiliation:

Clc Number:

TP393

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In real-world scenarios, rich interaction relationships often exist among users on different platforms such as e-commerce, consumer reviews, and social networks. Constructing these relationships into a graph structure and applying graph neural network (GNN) for malicious user detection has become a research trend in related fields in recent years. However, due to the small proportion of malicious users, as well as their disguises and high labeling costs, traditional GNN methods are limited by problems suchas data imbalance, data inconsistency, and label scarcity. This study proposes a semi-supervised graph representation learning-based method for detecting malicious nodes. The method improves the GNN method for node representation learning and classification. Specifically, a class-aware malicious node detection (CAMD) method is constructed, which introduces a class-aware attention mechanism, inconsistent GNN encoders, and class-aware imbalance loss functions to solve the problems of data inconsistency and imbalance. Furthermore, to address the limitation of CAMD in detecting malicious nodes with scarce labels, a graph contrastive learning-based method, CAMD+, is proposed. CAMD+ introduces data augmentation, self-supervised graph contrastive learning, and class-aware graph contrastive learning to enable the model to learn more information from unlabeled data and fully utilize scarce label information. Finally, a large number of experimental results on real-world datasets verify that the proposed methods outperform all baseline methods and demonstrate good detection performance in situations with different degrees of label scarcity.

    Reference
    Related
    Cited by
Get Citation

王晨旭,王凯月,王梦勤.基于半监督和自监督图表示学习的恶意节点检测.软件学报,,():1-20

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 10,2023
  • Revised:November 03,2023
  • Adopted:
  • Online: June 20,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063