Parallel Multi-scale Spatio-temporal Graph Convolutional Network for 3D Human Pose Estimation
Author:
Affiliation:

Clc Number:

TP391

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    As the human pose estimation (HPE) method based on graph convolutional network (GCN) cannot sufficiently aggregate spatiotemporal features of skeleton joints and restrict discriminative features extraction, in this paper, a parallel multi-scale spatio-temporal graph convolutional network (PMST-GNet) model is built to improve the performance of 3D HPE. Firstly, a diagonally dominant spatiotemporal attention graph convolutional layer (DDA-STGConv) is designed to construct a cross-domain spatiotemporal adjacency matrix and model the joint features based on self-constraint and attention mechanism constrain, therefore enhancing information interaction among nodes. Then, a graph topology aggregation function is devised to construct different graph topologies, and a parallel multi-scale sub-graph network module (PM-SubGNet) is constructed with DDA-STGConv as the basic unit. Finally, a multi-scale feature cross fusion block (MFEB) is designed, by which multi-scale information among PM-SubGNets can interact to improve the feature representation of GCN, therefore better extracting the context information of skeleton joints. The experimental results on the mainstream 3D HPE datasets Human3.6M and MPI-INF-3DHP show that the proposed PMST-GNet model has a good effect in 3D HPE and is superior to the current mainstream GCN-based algorithms such as Sem-GCN, GraphSH, and UGCN.

    Reference
    Related
    Cited by
Get Citation

杨红红,刘泓希,张玉梅,吴晓军.基于平行多尺度时空图卷积网络的三维人体姿态估计算法.软件学报,,():1-16

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 14,2022
  • Revised:July 20,2023
  • Adopted:
  • Online: June 20,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063