Denoising Graph Auto-encoder for Unsupervised Social Media Text Summarization
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Social media text summarization aims to provide concise summaries for large-scale social media short texts (referred to as posts) targeting specific topics. Given the brief and informal contents of posts, traditional methods confront the challenges of sparse features and insufficient information. Recent research endeavors have leveraged social relationships among posts to refine post contents and remove redundant information, but these efforts neglect the presence of unreliable noise relationships in real social media contexts, leading to erroneous assessments of post importance and diversity. Therefore, this study proposes a novel unsupervised model DSNSum, which improves summarization performance by removing noise relationships in the social networks. Firstly, the noise relationships in real social relationship networks are statistically verified. Secondly, two noise functions are designed based on sociological theories, and a denoising graph auto-encoder (DGAE) is constructed to mitigate the influence of noise relationships and cultivate post contents of credible social relationships. Finally, a sparse reconstruction framework is utilized to select posts that maintain coverage, importance, and diversity to form a summary of a certain length. Experimental results on a total of 22 topics from two real social media platforms (Twitter and Sina Weibo) demonstrate the efficacy of the proposed model and provide new insights for subsequent research in related fields.

    Reference
    Related
    Cited by
Get Citation

贺瑞芳,赵堂龙,刘焕宇.基于去噪图自编码器的无监督社交媒体文本摘要.软件学报,,():1-21

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 05,2023
  • Revised:November 22,2023
  • Adopted:
  • Online: June 20,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063