Data Poisoning Attacks and Defense Methods for Frequency Estimation in Local Differential Privacy
Author:
Affiliation:

Clc Number:

TP309

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Local differential privacy (LDP) is widely used to collect and analyze sensitive data while protecting user privacy. However, it is vulnerable to data poisoning attacks by malicious users. The k-subset mechanism and the wheel mechanism are LDP schemes with optimal utility for frequency estimation. Yet, their resistance to data poisoning attacks lacks in-depth analysis and evaluation. Therefore, data poisoning attack methods are designed to assess the resistance to data poisoning attacks of both the k-subset mechanism and the wheel mechanism. First, the random perturbed-value attack and random item attack are discussed, and then the maximal gain attack methods against the k-subset mechanism and the wheel mechanism are constructed. The attack methods can be exploited to maximize the frequencies of target items selected by attackers, which is achieved by sending carefully crafted poisoning data to the data collector via fake users. Theoretically, the attack gains are rigorously analyzed and compared, and the effects of data poisoning attacks are experimentally evaluated, demonstrating their impact on the k-subset mechanism and the wheel mechanism. Finally, defensive measures are proposed to mitigate the effects of data poisoning attacks.

    Reference
    Related
    Cited by
Get Citation

王源源,朱友文,吴启晖,王威,王箭.本地差分隐私频率估计伪数据攻击及防御方法.软件学报,,():1-17

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 02,2023
  • Revised:October 12,2023
  • Adopted:
  • Online: August 21,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063