Compositional Probabilistic Barrier Certificate Generation Based on PAC Learning
Author:
Affiliation:

Clc Number:

TP311

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Continuous dynamical systems safety verification is an important research issue, and over the years, various verification methods have been very limited in the scale of the problems they can handle. For a given continuous dynamical system, this study proposes an algorithm to generate a set of compositional probably approximately correct (PAC) barrier certificates through a counterexample-guided approach. A formal description of the infinite-time domain safety verification problem is given in terms of probability and statistics. By establishing and solving a mixed-integer programming method based on the Big-M method, the barrier certificate problem is transformed into a constrained optimization problem. Nonlinear inequalities are linearized in intervals using the mean value theorem of differentiation. Finally, this study implements the compositional PAC barrier certificate generator CPBC and evaluates its performance on 11 benchmark systems. The experimental results show that CPBC can successfully verify the safety of each dynamical system under specified different safety requirement thresholds. Compared with existing methods, the proposed method can more efficiently generate reliable probabilistic barrier certificates for complex or high-dimensional systems, with the verified example scale reaching up to hundreds of dimensions.

    Reference
    Related
    Cited by
Get Citation

杨紫萱,曾霞,任勐鑫,王建林,曾振柄,杨争峰.基于PAC学习的组合式概率障碍证书生成.软件学报,,():1-17

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 11,2023
  • Revised:October 30,2023
  • Adopted:
  • Online: November 06,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063