Bidirectional Imitation Distillation for Efficient Incremental Pre-training of E-commerce Social Knowledge Graph
Author:
Affiliation:

Clc Number:

TP181

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Pre-training knowledge graph (KG) models facilitate various downstream tasks in e-commerce applications. However, large-scale social KGs are highly dynamic, and the pre-training models need to be updated regularly to reflect the changes in node features caused by user interactions. This paper proposes an efficient incremental update framework for the pre-training KG models. The framework mainly includes a bidirectional imitation distillation method to fully use the different types of facts in new data, and a sampling strategy based on samples’ normality and abnormality is proposed to sample the most valuable facts from all new facts to reduce the training data size, and a reverse replay mechanism is proposed to generate high-quality negative facts that are more suitable for the incremental training of social KGs in e-commerce. Experimental results on real-world e-commerce datasets and related downstream tasks demonstrate that the proposed framework can incrementally update the pre-training KG models more effectively and efficiently compared to state-of-the-art methods.

    Reference
    Related
    Cited by
Get Citation

朱渝珊,张文,王晓珂,李志宇,陈名杨,姚祯,陈辉,陈华钧.面向电子商务社交知识图谱高效增量预训练的双向模仿蒸馏.软件学报,,():1-22

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 25,2023
  • Revised:October 10,2023
  • Adopted:
  • Online: June 14,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063