Multi-granulation Incremental Feature Selection Algorithm for Dynamic Hybrid Data
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the era of big data, the sample scale and the dynamic update and variation of dimensionality greatly increase the computational burden. Most of these data sets do not exist in the form of a single data type but are more often hybrid data containing both symbolic and numerical data. For this reason, scholars have proposed many feature selection algorithms for hybrid data. However, most of the existing algorithms are only applicable to static data or small-scale incremental data and cannot handle large-scale dynamic changing data, especially large-scale incremental data sets with changing data distribution. To address this limitation, this paper proposes a multi-granulation incremental feature selection algorithm for dynamic hybrid data based on an information fusion mechanism by analyzing the variations and updates of granularity space and granularity structure in dynamic data. The algorithm focuses on the mechanism of granularity space construction in dynamic hybrid data, the mechanism of dynamic update of multiple data granularity structures, and the mechanism of information fusion for data distribution variations. Finally, the paper verifies the feasibility and efficiency of the proposed algorithm by comparing the experimental results with other algorithms on the UCI dataset.

    Reference
    Related
    Cited by
Get Citation

王锋,姚珍,梁吉业.面向动态混合数据的多粒度增量特征选择算法.软件学报,,():1-16

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 16,2023
  • Revised:August 10,2023
  • Adopted:
  • Online: May 08,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063