Factored Multi-agent Centralised Policy Gradients with Parameterized Action Space and Its Application
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, multi-agent reinforcement learning methods have demonstrated excellent decision-making capabilities and broad application prospects in successful cases such as AlphaStar, AlphaDogFight, and AlphaMosaic. In the multi-agent decision-making system in a real-world environments, the decision-making space of its task is often a parameterized action space with both discrete and continuous action variables. The complex structure of this type of action space makes traditional multi-agent reinforcement learning algorithms no longer applicable. Therefore, researching for parameterized action spaces holds important significance in real-world application. This study proposes a factored multi-agent centralised policy gradients algorithm for parameterized action space in multi-agent settings. By utilizing the factored centralised policy gradient algorithm, effective coordination among multi-agent is ensured. After that, the output of the dual-headed policy in the parameterized deep deterministic policy gradient algorithm is employed to achieve effective coupling in the parameterized action space. Experimental results under different parameter settings in the hybrid predator-prey scenario show that the algorithm has good performance on classic multi-agent parameterized action space collaboration tasks. Additionally, the algorithm’s effectiveness and feasibility is validated in a multi-cruise-missile collaborative penetration tasks with complex and high dynamic properties.

    Reference
    Related
    Cited by
Get Citation

田树聪,谢愈,张远龙,周正春,高阳.面向参数化动作空间的多智能体中心化策略梯度分解及其应用.软件学报,,():1-18

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 11,2023
  • Revised:October 09,2023
  • Adopted:
  • Online: July 17,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063