Time-series Domain Adaptation Based on Path Signature
Author:
Affiliation:

Clc Number:

TP18

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recently, deep learning has received increasing attention from researchers due to its excellent performance in various scenarios, but these methods often rely on the independent and identically distribution assumption. Domain adaptation is a problem proposed to mitigate the impact of distribution offset, which uses labeled source domain data and unlabeled target domain data to achieve better performance on target data. Existing methods are devised for static data, while the methods for time series data need to capture the dependencies between variables. Although these methods use feature extractors for time series data, such as recurrent neural networks, to learn the dependencies between variables, they often extract redundant information. This information is easily entangled with semantic information, affecting the model performance. To solve these problems, this study proposes a path-signature-based time-series domain adaptation (PSDA). On the one hand, this method uses path signature transformation to capture sparse dependencies between variables and eliminate redundant correlations while preserving semantic dependencies, thereby facilitating the extraction of discriminative features from temporal data. On the other hand, the invariant dependency relationships are preserved by constraining the consistency of dependency relationships among different domains, and the changing dependency relationships between domains are excluded, which is conducive to extracting generalized features from temporal data. Based on the above methods, the study further proposes a distance metric and generalized boundary theory and obtains the best experimental results on multiple time series domain adaptation standard datasets.

    Reference
    Related
    Cited by
Get Citation

蔡瑞初,颜嘉文,陈道鑫,李梓健,郝志峰.基于路径签名的时间序列领域自适应方法.软件学报,,():1-20

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 28,2023
  • Revised:August 15,2023
  • Adopted:
  • Online: July 03,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063