Survey on Hash Learning for Large-scale Image Retrieval
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [201]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    As image data grows explosively on the Internet and image application fields widen, the demand for large-scale image retrieval is increasing greatly. Hash learning provides significant storage and retrieval efficiency for large-scale image retrieval and has attracted intensive research interest in recent years. Existing surveys on hash learning are confronted with the problems of weak timeliness and unclear technical routes. Specifically, they mainly conclude the hashing methods proposed five to ten years ago, and few of them conclude the relationship between the components of hashing methods. In view of this, this study makes a comprehensive survey on hash learning for large-scale image retrieval by reviewing the hash learning literature published in the past twenty years. First, the technical route of hash learning and the key components of hashing methods are summarized, including loss function, optimization strategy, and out-of-sample extension. Second, hashing methods for image retrieval are classified into two categories: unsupervised hashing methods and supervised ones. For each category of hashing methods, the research status and evolvement process are analyzed. Third, several image benchmarks and evaluation metrics are introduced, and the performance of some representative hashing methods is analyzed through comparative experiments. Finally, the future research directions of hash learning are summarized considering its limitations and new challenges.

    Reference
    [1] i-SCOOP. How the pandemic impacted data creation and storage. 2022. https://www.i-scoop.eu/big-data-action-value-context/data-storage-creation
    [2] i-SCOOP. Data Age 2025: The datasphere and data-readiness from edge to core. 2022. https://www.i-scoop.eu/big-data-action-value-context/data-age-2025-datasphere
    [3] 中国互联网络信息中心. 第49次《中国互联网络发展状况统计报告》. 2022. https://www.cnnic.cn/n4/2022/0401/c88-1131.html
    CNNIC. The 49th statistical report on China’s Internet development. 2022 (in Chinese). https://www.cnnic.cn/n4/2022/0401/c88-1131.html
    [4] Wang J, Kumar S, Chang SF. Semi-supervised hashing for scalable image retrieval. In: Proc. of the 2010 IEEE Conf. on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010. 3424–3431. [doi: 10.1109/CVPR.2010.5539994]
    [5] Tian X, Ng WWY, Wang H, Kwong S. Complementary incremental hashing with query-adaptive re-ranking for image retrieval. IEEE Trans. on Multimedia, 2021, 23: 1210–1224.
    [6] Gong YC, Lazebnik S, Gordo A, Perronnin F. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916–2929.
    [7] 国务院. 国务院关于印发新一代人工智能发展规划的通知. 2017. https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
    The State Council, the People’s Republic of China. Circular of the State Council on printing and issuing the plan for development of the new generation of artificial intelligence. 2017 (in Chinese). https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
    [8] 中华人民共和国中央人民政府. 政府工作报告. 2022. http://www.gov.cn/premier/2022-03/12/content_5678750.htm
    The State Council, the People’s Republic of China. Government work report. 2022 (in Chinese). http://www.gov.cn/premier/2022-03/12/content_5678750.htm
    [9] Hansen C, Hansen C, Simonsen JG, Alstrup S, Lioma C. Content-aware neural hashing for cold-start recommendation. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Xi’an: ACM, 2020. 971–980.
    [10] 中国信息通信研究院. 人工智能白皮书 (2022年). 北京: 中国信息通信研究院, 2022. http://www.caict.ac.cn/kxyj/qwfb/bps/202204/t20220412_399752.htm
    CAICT. White paper on artificial intelligence (2022). Technical Report, Bejing: China Academy of Information and Communications Technology, 2022 (in Chinese). http://www.caict.ac.cn/kxyj/qwfb/bps/202204/t20220412_399752.htm
    [11] Indyk P, Motwani R. Approximate nearest neighbors: Towards removing the curse of dimensionality. In: Proc. of the 30th Annual ACM Symp. on Theory of Computing. Dallas: ACM, 1998. 604–613. [doi: 10.1145/276698.276876]
    [12] Li W, Zhang Y, Sun YF, Wang W, Li MJ, Zhang WJ, Lin XM. Approximate nearest neighbor search on high dimensional data-experiments, analyses, and improvement. IEEE Trans. on Knowledge and Data Engineering, 2020, 32(8): 1475–1488.
    [13] Jo J, Seo J, Fekete JD. PANENE: A progressive algorithm for indexing and querying approximate k-nearest neighbors. IEEE Trans. on Visualization and Computer Graphics, 2020, 26(2): 1347–1360.
    [14] Ram P, Sinha K. Revisiting KD-tree for nearest neighbor search. In: Proc. of the 25th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Anchorage: ACM, 2019. 1378–1388. [doi: 10.1145/3292500.3330875]
    [15] 李松, 胡晏铭, 郝晓红, 张丽平, 郝忠孝. 基于维度分组降维的高维数据近似k近邻查询. 计算机研究与发展, 2021, 58(3): 609–623.
    Li S, Hu YM, Hao XH, Zhang LP, Hao ZX. Approximate k-nearest neighbor query of high dimensional data based on dimension grouping and reducing. Journal of Computer Research and Development, 2021, 58(3): 609–623 (in Chinese with English abstract).
    [16] Jégou H, Douze M, Schmid C. Product quantization for nearest neighbor search. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2011, 33(1): 117–128.
    [17] Babenko A, Lempitsky V. Additive quantization for extreme vector compression. In: Proc. of the 2014 IEEE Conf. on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 931–938. [doi: 10.1109/CVPR.2014.124]
    [18] 李武军, 周志华. 大数据哈希学习: 现状与趋势. 科学通报, 2015, 60(5): 485–490.
    Li WJ, Zhou ZH. Learning to hash for big data: Current status and future trends. Chinese Science Bulletin, 2015, 60(5): 485–490 (in Chinese with English abstract).
    [19] Wang JD, Zhang T, Song JK, Sebe N, Shen HT. A survey on learning to hash. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(4): 769–790.
    [20] Wang J, Liu W, Kumar S, Chang SF. Learning to hash for indexing big data—A survey. Proc. of the IEEE, 2016, 104(1): 34–57.
    [21] Qin JB, Wang W, Xiao C, Zhang Y, Wang YS. High-dimensional similarity query processing for data science. In: Proc. of the 27th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Singapore: ACM, 2021. 4062–4063. [doi: 10.1145/3447548.3470811]
    [22] Kulis B, Grauman K. Kernelized locality-sensitive hashing for scalable image search. In: Proc. of the 12th IEEE Int’l Conf. on Computer Vision. Kyoto: IEEE, 2009. 2130–2137. [doi: 10.1109/ICCV.2009.5459466]
    [23] Raginsky M, Lazebnik S. Locality-sensitive binary codes from shift-invariant kernels. In: Proc. of the 22nd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2009. 1509–1517.
    [24] Liu W, Wang J, Kumar S, Chang SF. Hashing with graphs. In: Proc. of the 28th Int’l Conf. on Machine Learning. Washington: Omnipress, 2011. 1–8.
    [25] Weiss Y, Torralba A, Fergus R. Spectral hashing. In: Proc. of the 21st Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2008. 1753–1760.
    [26] Kong WH, Li WJ. Isotropic hashing. In: Proc. of the 25th Int’l Conf. on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2012. 1646–1654.
    [27] Kong WH, Li WJ. Double-bit quantization for hashing. In: Proc. of the 26th AAAI Conf. on Artificial Intelligence. Toronto: AAAI, 2012. 634–640. [doi: 10.1609/aaai.v26i1.8208]
    [28] Xie HT, Mao ZD, Zhang YD, Deng H, Yan CG, Chen ZN. Double-bit quantization and index hashing for nearest neighbor search. IEEE Trans. on Multimedia, 2019, 21(5): 1248–1260.
    [29] Cao Y, Qi H, Gui J, Li KQ, Tang YY, Kwok JTY. Learning to hash with dimension analysis based quantizer for image retrieval. IEEE Trans. on Multimedia, 2021, 23: 3907–3918.
    [30] Wang Z, Duan LY, Lin J, Wang XF, Huang TJ, Gao W. Hamming compatible quantization for hashing. In: Proc. of the 24th Int’l Conf. on Artificial Intelligence. Buenos Aires: AAAI, 2015. 2298–2304.
    [31] Hu MQ, Yang Y, Shen FM, Xie N, Shen HT. Hashing with angular reconstructive embeddings. IEEE Trans. on Image Processing, 2018, 27(2): 545–555.
    [32] Duan LY, Wu YW, Huang YC, Wang Z, Yuan JS, Gao W. Minimizing reconstruction bias hashing via joint projection learning and quantization. IEEE Trans. on Image Processing, 2018, 27(6): 3127–3141.
    [33] He KM, Wen F, Sun J. K-means hashing: An affinity-preserving quantization method for learning binary compact codes. In: Proc. of the 2013 IEEE Conf. on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. 2938–2945. [doi: 10.1109/CVPR.2013.378]
    [34] Norouzi M, Fleet DJ. Cartesian k-means. In: Proc. of the 2013 IEEE Conf. on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. 3017–3024. [doi: 10.1109/CVPR.2013.388]
    [35] Ryali CK, Hopfield JJ, Grinberg L, Krotov D. Bio-inspired hashing for unsupervised similarity search. In: Proc. of the 37th Int’l Conf. on Machine Learning. PMLR, 2020. 8295–8306.
    [36] Ding GG, Guo YC, Zhou JL. Collective matrix factorization hashing for multimodal data. In: Proc. of the 2014 IEEE Conf. on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 2083–2090. [doi: 10.1109/CVPR.2014.267]
    [37] Mukherjee L, Ravi SN, Ithapu VK, Holmes T, Singh V. An NMF perspective on binary hashing. In: Proc. of the 2015 IEEE Int’l Conf. on Computer Vision. Santiago: IEEE, 2015. 4184–4192. [doi: 10.1109/ICCV.2015.476]
    [38] He SY, Wang BK, Wang Z, Yang Y, Shen FM, Huang Z, Shen HT. Bidirectional discrete matrix factorization hashing for image search. IEEE Trans. on Cybernetics, 2020, 50(9): 4157–4168.
    [39] Hu D, Nie FP, Li XL. Discrete spectral hashing for efficient similarity retrieval. IEEE Trans. on Image Processing, 2019, 28(3): 1080–1091.
    [40] Shen FM, Shen CH, Shi QF, van den Hengel A, Tang ZM. Inductive hashing on manifolds. In: Proc. of the 2013 IEEE Conf. on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. 1562–1569. [doi: 10.1109/CVPR.2013.205]
    [41] Liu W, Mu C, Kumar S, Chang SF. Discrete graph hashing. In: Proc. of the 27th Int’l Conf. on Neural Information Processing Systems. Montreal: MIT Press, 2014. 3419–3427.
    [42] Jiang QY, Li WJ. Scalable graph hashing with feature transformation. In: Proc. of the 24th Int’l Conf. on Artificial Intelligence. Buenos Aires: AAAI, 2015. 2248–2254.
    [43] Irie G, Li ZG, Wu XM, Chang SF. Locally linear hashing for extracting non-linear manifolds. In: Proc. of the 2014 IEEE Conf. on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 2123–2130. [doi: 10.1109/CVPR.2014.272]
    [44] Ma C, Gong C, Li X, Huang XL, Liu W, Yang J. Toward making unsupervised graph hashing discriminative. IEEE Trans. on Multimedia, 2020, 22(3): 760–774.
    [45] Jin S, Yao HX, Zhou Q, Liu Y, Huang JQ, Hua XS. Unsupervised discrete hashing with affinity similarity. IEEE Trans. on Image Processing, 2021, 30: 6130–6141.
    [46] Wang M, Zhou WG, Tian Q, Li HQ. Neighborhood pyramid preserving hashing. IEEE Trans. on Multimedia, 2020, 22(6): 1507–1518.
    [47] Liu H, Ji RR, Wu YJ, Huang FY. Ordinal constrained binary code learning for nearest neighbor search. In: Proc. of the 31st AAAI Conf. on Artificial Intelligence. San Francisco: AAAI, 2017. 2238–2244. [doi: 10.1609/aaai.v31i1.10906]
    [48] Liu H, Ji RR, Wang JD, Shen CH. Ordinal constraint binary coding for approximate nearest neighbor search. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2019, 41(4): 941–955.
    [49] Carreira-Perpiñán MÁ, Raziperchikolaei R. Hashing with binary autoencoders. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 557–566. [doi: 10.1109/CVPR.2015.7298654]
    [50] Li YQ, van Gemert J. Deep unsupervised image hashing by maximizing bit entropy. In: Proc. of the 35th AAAI Conf. on Artificial Intelligence. AAAI, 2021. 2002–2010. [doi: 10.1609/aaai.v35i3.16296]
    [51] Dizaji KG, Zheng F, Nourabadi NS, Yang YH, Deng C, Huang H. Unsupervised deep generative adversarial hashing network. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 3664–3673.
    [52] Lin K, Lu JW, Chen CS, Zhou J, Sun MT. Unsupervised deep learning of compact binary descriptors. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2019, 41(6): 1501–1514.
    [53] Do TT, Doan AD, Cheung NM. Learning to hash with binary deep neural network. In: Proc. of the 14th European Conf. on Computer Vision. Amsterdam: Springer, 2016. 219–234. [doi: 10.1007/978-3-319-46454-1_14]
    [54] Liu L, Yu MY, Shao L. Latent structure preserving hashing. Int’l Journal of Computer Vision, 2017, 122(3): 439–457.
    [55] Deng C, Yang EK, Liu TL, Li J, Liu W, Tao DC. Unsupervised semantic-preserving adversarial hashing for image search. IEEE Trans. on Image Processing, 2019, 28(8): 4032–4044.
    [56] Hu QH, Wu JX, Cheng J, Wu LF, Lu HQ. Pseudo label based unsupervised deep discriminative hashing for image retrieval. In: Proc. of the 25th ACM Int’l Conf. on Multimedia. Mountain View: ACM, 2017. 1584–1590. [doi: 10.1145/3123266.3123403]
    [57] Zhang HF, Liu L, Long Y, Shao L. Unsupervised deep hashing with pseudo labels for scalable image retrieval. IEEE Trans. on Image Processing, 2018, 27(4): 1626–1638.
    [58] Yang EK, Deng C, Liu TL, Liu W, Tao DC. Semantic structure-based unsupervised deep hashing. In: Proc. of the 27th Int’l Joint Conf. on Artificial Intelligence. Stockholm: AAAI, 2018. 1064–1070.
    [59] Dong X, Liu L, Zhu L, Cheng ZY, Zhang HX. Unsupervised deep K-means hashing for efficient image retrieval and clustering. IEEE Trans. on Circuits and Systems for Video Technology, 2021, 31(8): 3266–3277.
    [60] Qin QB, Huang L, Wei ZQ, Xie KZ, Zhang WF. Unsupervised deep multi-similarity hashing with semantic structure for image retrieval. IEEE Trans. on Circuits and Systems for Video Technology, 2021, 31(7): 2852–2865.
    [61] Luo X, Wu DQ, Ma ZY, Chen C, Deng MH, Huang JQ, Hua XS. A statistical approach to mining semantic similarity for deep unsupervised hashing. In: Proc. of the 29th ACM Int’l Conf. on Multimedia. Chengdu: ACM, 2021. 4306–4314. [doi: 10.1145/3474085.3475570]
    [62] 李长升, 闵齐星, 成雨蓉, 袁野, 王国仁. 捕获局部语义结构和实例辨别的无监督哈希. 软件学报, 2021, 32(3): 742–752. http://www.jos.org.cn/1000-9825/6178.htm
    Li CS, Min QX, Cheng YR, Yuan Y, Wang GR. Local semantic structure captured and instance discriminated by unsupervised hashing. Ruan Jian Xue Bao/Journal of Software, 2021, 32(3): 742–752 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/6178.htm
    [63] Shen FM, Xu Y, Liu L, Yang Y, Huang Z, Shen HT. Unsupervised deep hashing with similarity-adaptive and discrete optimization. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(12): 3034–3044.
    [64] Shen YM, Qin J, Chen JX, Yu MY, Liu L, Zhu F, Shen FM, Shao L. Auto-encoding twin-bottleneck hashing. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 2815–2824. [doi: 10.1109/CVPR42600.2020.00289]
    [65] Zhang HF, Gu YF, Yao YZ, Zhang Z, Liu L, Zhang J, Shao L. Deep unsupervised self-evolutionary hashing for image retrieval. IEEE Trans. on Multimedia, 2021, 23: 3400–3413.
    [66] Shen FM, Shen CH, Liu W, Shen HT. Supervised discrete hashing. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 37–45. [doi: 10.1109/CVPR.2015.7298598]
    [67] Liu W, Wang J, Ji RR, Jiang YG, Chang SF. Supervised hashing with kernels. In: Proc. of the 2012 IEEE Conf. on Computer Vision and Pattern Recognition. Providence: IEEE, 2012. 2074–2081. [doi: 10.1109/CVPR.2012.6247912]
    [68] Kang WC, Li WJ, Zhou ZH. Column sampling based discrete supervised hashing. In: Proc. of the 30th AAAI Conf. on Artificial Intelligence. Phoenix: AAAI, 2016. 1230–1236. [doi: 10.1609/aaai.v30i1.10176]
    [69] Zhu H, Long MS, Wang JM, Cao Y. Deep hashing network for efficient similarity retrieval. In: Proc. of the 30th AAAI Conf. on Artificial Intelligence. Phoenix: AAAI, 2016. 2415–2421. [doi: 10.1609/aaai.v30i1.10235]
    [70] Cao Y, Long MS, Liu B, Wang JM. Deep Cauchy hashing for hamming space retrieval. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 1229–1237. [doi: 10.1109/CVPR.2018.00134]
    [71] Li Q, Sun ZN, He R, Tan TN. Deep supervised discrete hashing. In: Proc. of the 31st Int’l Conf. on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 2479–2488.
    [72] Liu Q, Lu HT. Natural supervised hashing. In: Proc. of the 25th Int’l Joint Conf. on Artificial Intelligence. New York: AAAI, 2016. 1788–1794.
    [73] Gui J, Liu TL, Sun ZN, Tao DC, Tan TN. Supervised discrete hashing with relaxation. IEEE Trans. on Neural Networks and Learning Systems, 2018, 29(3): 608–617.
    [74] Gui J, Li P. R2SDH: Robust rotated supervised discrete hashing. In: Proc. of the 24th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. London: ACM, 2018. 1485–1493. [doi: 10.1145/3219819.3219955]
    [75] Zhang HW, Zhao N, Shang XD, Luan HB, Chua TS. Discrete image hashing using large weakly annotated photo collections. In: Proc. of the 30th AAAI Conf. on Artificial Intelligence. Phoenix: AAAI, 2016. 3669–3675. [doi: 10.1609/aaai.v30i1.10453]
    [76] Yang HF, Lin K, Chen CS. Supervised learning of semantics-preserving hash via deep convolutional neural networks. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(2): 437–451.
    [77] Zhou C, Po LM, Ou WF. Angular deep supervised vector quantization for image retrieval. IEEE Trans. on Neural Networks and Learning Systems, 2022, 33(4): 1638–1649.
    [78] Cui H, Zhu L, Li JJ, Yang Y, Nie LQ. Scalable deep hashing for large-scale social image retrieval. IEEE Trans. on Image Processing, 2020, 29: 1271–1284.
    [79] Zhang Z, Liu LY, Luo YD, Huang Z, Shen FM, Shen HT, Lu GM. Inductive structure consistent hashing via flexible semantic calibration. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32(10): 4514–4528.
    [80] Zhu L, Huang Z, Li ZH, Xie L, Shen HT. Exploring auxiliary context: Discrete semantic transfer hashing for scalable image retrieval. IEEE Trans. on Neural Networks and Learning Systems, 2018, 29(11): 5264–5276.
    [81] Zhou X, Shen FM, Liu L, Liu W, Nie LQ, Yang Y, Shen HT. Graph convolutional network hashing. IEEE Trans. on Cybernetics, 2020, 50(4): 1460–1472.
    [82] Li ZC, Tang JH, Zhang LY, Yang J. Weakly-supervised semantic guided hashing for social image retrieval. Int’l Journal of Computer Vision, 2020, 128(8–9): 2265–2278.
    [83] Yang Y, Luo YD, Chen WL, Shen FM, Shao J, Shen HT. Zero-shot hashing via transferring supervised knowledge. In: Proc. of the 24th ACM Int’l Conf. on Multimedia. Amsterdam: ACM, 2016. 1286–1295. [doi: 10.1145/2964284.2964319]
    [84] Ji Z, Sun YX, Yu YL, Pang YW, Han JG. Attribute-guided network for cross-modal zero-shot hashing. IEEE Trans. on Neural Networks and Learning Systems, 2020, 31(1): 321–330.
    [85] Wu CX, Zhu JK, Cai D, Chen C, Bu JJ. Semi-supervised nonlinear hashing using bootstrap sequential projection learning. IEEE Trans. on Knowledge and Data Engineering, 2013, 25(6): 1380–1393.
    [86] Lin GS, Shen CH, Suter D, van den Hengel A. A general two-step approach to learning-based hashing. In: Proc. of the 2013 IEEE Conf. on Computer Vision. Sydney: IEEE, 2013. 2552–2559. [doi: 10.1109/ICCV.2013.317]
    [87] Lin GS, Shen CH, van den Hengel A. Supervised hashing using graph cuts and boosted decision trees. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2015, 37(11): 2317–2331.
    [88] Chen ZX, Yuan X, Lu JW, Tian Q, Zhou J. Deep hashing via discrepancy minimization. In: Proc. of the 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 6838–6847. [doi: 10.1109/CVPR.2018.00715]
    [89] Li WJ, Wang S, Kang WC. Feature learning based deep supervised hashing with pairwise labels. In: Proc. of the 25th Int’l Joint Conf. on Artificial Intelligence. New York: AAAI, 2016. 1711–1717.
    [90] Jiang QY, Cui X, Li WJ. Deep discrete supervised hashing. IEEE Trans. on Image Processing, 2018, 27(12): 5996–6009.
    [91] Chen Y, Tian ZB, Zhang H, Wang J, Zhang D. Strongly constrained discrete hashing. IEEE Trans. on Image Processing, 2020, 29: 3596–3611.
    [92] Wang D, Huang HY, Lu C, Feng BS, Wen GH, Nie LQ, Mao XL. Supervised deep hashing for hierarchical labeled data. In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans: AAAI, 2018. 7388–7395. [doi: 10.1609/aaai.v32i1.12247]
    [93] Wang YB, Ou XF, Liang J, Sun ZN. Deep semantic reconstruction hashing for similarity retrieval. IEEE Trans. on Circuits and Systems for Video Technology, 2021, 31(1): 387–400.
    [94] Zhang PC, Zhang W, Li WJ, Guo MY. Supervised hashing with latent factor models. In: Proc. of the 37th Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Gold Coast: ACM, 2014. 173–182. [doi: 10.1145/2600428.2609600]
    [95] Shi XS, Xing FY, Xu KD, Sapkota M, Yang L. Asymmetric discrete graph hashing. In: Proc. of the 31st AAAI Conf. on Artificial Intelligence. San Francisco: AAAI, 2017. 2541–2547. [doi: 10.1609/aaai.v31i1.10831]
    [96] Jiang QY, Li WJ. Asymmetric deep supervised hashing. In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans: AAAI, 2018. 3342–3349. [doi: 10.1609/aaai.v32i1.11814]
    [97] Zhao W, Xu C, Guan ZY, Wu XL, Zhao WQ, Miao QG, He XF, Wang Q. TelecomNet: Tag-based weakly-supervised modally cooperative hashing network for image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7940–7954.
    [98] Shen XB, Dong GH, Zheng YH, Lan L, Tsang IW, Sun QS. Deep co-image-label hashing for multi-label image retrieval. IEEE Trans. on Multimedia, 2022, 24: 1116–1126.
    [99] Lai HJ, Pan Y, Liu Y, Yan SC. Simultaneous feature learning and hash coding with deep neural networks. In: Proc. of the 2015 IEEE Conf. on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3270–3278. [doi: 10.1109/CVPR.2015.7298947]
    [100] Zhuang BH, Lin GS, Shen CH, Reid I. Fast training of triplet-based deep binary embedding networks. In: Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 5955–5964. [doi: 10.1109/CVPR.2016.641]
    [101] Liu B, Cao Y, Long MS, Wang JM, Wang JD. Deep triplet quantization. In: Proc. of the 26th ACM Conf. on Multimedia. Seoul: ACM, 2018. 755–763. [doi: 10.1145/3240508.3240516]
    [102] Zhang Z, Zhu XF, Lu GM, Zhang YD. Probability ordinal-preserving semantic hashing for large-scale image retrieval. ACM Trans. on Knowledge Discovery from Data, 2021, 15(3): 37.
    [103] Liang YC, Pan Y, Lai HJ, Liu W, Yin J. Deep listwise triplet hashing for fine-grained image retrieval. IEEE Trans. on Image Processing, 2022, 31: 949–961.
    [104] Liu HM, Wang RP, Shan SG, Chen XL. Deep supervised hashing for fast image retrieval. In: Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 2064–2072. [doi: 10.1109/CVPR.2016.227]
    [105] Chen YD, Lai ZH, Ding YJ, Lin KY, Wong W. Deep supervised hashing with anchor graph. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 9795–9803. [doi: 10.1109/ICCV.2019.00989]
    [106] Li Q, Sun ZN, He R, Tan TN. A general framework for deep supervised discrete hashing. Int’l Journal of Computer Vision, 2020, 128(8-9): 2204–2222.
    [107] Zhang J, Peng YX, Yuan MK. SCH-GAN: Semi-supervised cross-modal hashing by generative adversarial network. IEEE Trans. on Cybernetics, 2020, 50(2): 489–502.
    [108] Cao Y, Qi H, Zhou WR, Kato J, Li KQ, Liu XL, Gui J. Binary hashing for approximate nearest neighbor search on big data: A survey. IEEE Access, 2018, 6: 2039–2054.
    [109] 费伦科, 秦建阳, 滕少华, 张巍, 刘冬宁, 侯艳. 近似最近邻大数据检索哈希散列方法综述. 广东工业大学学报, 2020, 37(3): 23–35.
    Fei LK, Qin JY, Teng SH, Zhang W, Liu DN, Hou Y. Hashing for approximate nearest neighbor search on big data: A survey. Journal of Guangdong University of Technology, 2020, 37(3): 23–35 (in Chinese with English abstract).
    [110] Luo X, Wang HX, Wu DQ, Chen C, Deng MH, Huang JQ, Hua XS. A survey on deep hashing methods. ACM Trans. on Knowledge Discovery from Data, 2023, 17(1): 15.
    [111] Luo X, Nie LQ, He XN, Wu Y, Chen ZD, Xu XS. Fast scalable supervised hashing. In: Proc. of the 41st Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Ann Arbor: ACM, 2018. 735–744. [doi: 10.1145/3209978.3210035]
    [112] Wang D, Gao XB, Wang XM, He LH. Label consistent matrix factorization hashing for large-scale cross-modal similarity search. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2019, 41(10): 2466–2479.
    [113] Shen FM, Zhou X, Yang Y, Song JK, Shen HT, Tao DC. A fast optimization method for general binary code learning. IEEE Trans. on Image Processing, 2016, 25(12): 5610–5621.
    [114] Xiong H, Yu MY, Liu L, Zhu F, Qin J, Shen FM, Shao L. A generalized method for binary optimization: Convergence analysis and applications. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4524–4543.
    [115] Gui J, Liu TL, Sun ZN, Tao DC, Tan TN. Fast supervised discrete hashing. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2018, 40(2): 490–496.
    [116] He JF, Liu W, Chang SF. Scalable similarity search with optimized kernel hashing. In: Proc. of the 16th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Washington: ACM, 2010. 1129–1138. [doi: 10.1145/1835804.1835946]
    [117] Strecha C, Bronstein AM, Bronstein MM, Fua P. LDAHash: Improved matching with smaller descriptors. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34(1): 66–78.
    [118] Wang JF, Shen HT, Yan SC, Yu NH, Li SP, Wang JD. Optimized distances for binary code ranking. In: Proc. of the 22nd ACM Int’l Conf. on Multimedia. Orlando: ACM, 2014. 517–526. [doi: 10.1145/2647868.2654898]
    [119] Zhang L, Zhang YD, Tang JH, Lu K, Tian Q. Binary code ranking with weighted hamming distance. In: Proc. of the 2013 IEEE Conf. on Computer Vision and Pattern Recognition. Portland: IEEE, 2013. 1586–1593. [doi: 10.1109/CVPR.2013.208]
    [120] Gordo A, Perronnin F, Gong YC, Lazebnik S. Asymmetric distances for binary embeddings. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2014, 36(1): 33–47.
    [121] Ye RZ, Li XL. Compact structure hashing via sparse and similarity preserving embedding. IEEE Trans. on Cybernetics, 2016, 46(3): 718–729.
    [122] Long J, Sun LZ, Guo L, Hua LJ, Yang Z. Label embedding semantic-guided hashing. Neurocomputing, 2022, 477: 1–13.
    [123] Liu XB, Nie XS, Zhou Q, Yin YL. Supervised discrete hashing with mutual linear regression. In: Proc. of the 27th ACM Int’l Conf. on Multimedia. Nice: ACM, 2019. 1561–1568. [doi: 10.1145/3343031.3351091]
    [124] Kulis B, Darrell T. Learning to hash with binary reconstructive embeddings. In: Proc. of the 22nd Int’l Conf. on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2009. 1042–1050.
    [125] Li N, Li C, Deng C, Liu XL, Gao XB. Deep joint semantic-embedding hashing. In: Proc. of the 27th Int’l Joint Conf. on Artificial Intelligence. Stockholm: AAAI, 2018. 2397–2403.
    [126] Jang YK, Cho NI. Generalized product quantization network for semi-supervised image retrieval. In: Proc. of the 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 3417–3426. [doi: 10.1109/CVPR42600.2020.00348]
    [127] Chen ZX, Lu JW, Feng JJ, Zhou J. Nonlinear sparse hashing. IEEE Trans. on Multimedia, 2017, 19(9): 1996–2009.
    [128] Chen Q, Shen ZW, Chen Z. A penalty function semi-continuous thresholding methods for constraints of hashing problems. Journal of Visual Communication and Image Representation, 2022, 87: 103552.
    [129] Koutaki G, Shirai K, Ambai M. Hadamard coding for supervised discrete hashing. IEEE Trans. on Image Processing, 2018, 27(11): 5378–5392.
    [130] Cao ZJ, Long MS, Wang JM, Yu PS. HashNet: Deep learning to hash by continuation. In: Proc. of the 2017 IEEE Conf. on Computer Vision. Venice: IEEE, 2017. 5609–5618. [doi: 10.1109/ICCV.2017.598]
    [131] Su SP, Zhang C, Han K, Tian YH. Greedy hash: Towards fast optimization for accurate hash coding in CNN. In: Proc. of the 32nd Int’l Conf. on Neural Information Processing Systems. Montreal: Curran Associates Inc., 2018. 806–815.
    [132] Huang LK, Chen JD, Pan S. Accelerate learning of deep hashing with gradient attention. In: Proc. of the 2019 IEEE/CVF Int’l Conf. on Computer Vision. Seoul: IEEE, 2019. 5270–5279. [doi: 10.1109/ICCV.2019.00537]
    [133] 聂秀山, 刘兴波, 袭肖明, 尹义龙. 基于相似度驱动的线性哈希模型参数再优化方法. 软件学报, 2020, 31(4): 1039–1050. http://www.jos.org.cn/1000-9825/5918.htm
    Nie XS, Liu XB, Xi XM, Yin YL. Model parameter re-optimization for linear hashing based on similarity drive. Journal of Software, 2020, 31(4): 1039–1050 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5918.htm
    [134] Mu YD, Liu Z. Deep hashing: A joint approach for image signature learning. In: Proc. of the 31st AAAI Conf. on Artificial Intelligence. San Francisco: AAAI, 2017. 2380–2386. [doi: 10.1609/aaai.v31i1.10858]
    [135] Salakhutdinov R, Hinton G. Semantic hashing. Int’l Journal of Approximate Reasoning, 2009, 50(7): 969–978.
    [136] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139–144.
    [137] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proc. of the 27th Int’l Conf. on Machine Learning. Haifa: Omnipress, 2010. 807–814.
    [138] Zhang W, Yang XQ, Teng SH, Wu NQ. Semantic-guided hashing learning for domain adaptive retrieval. World Wide Web, 2023, 26(3): 1093–1112.
    [139] Shakhnarovich G, Viola P, Darrell T. Fast pose estimation with parameter-sensitive hashing. In: Proc. of the 9th IEEE Int’l Conf. on Computer Vision. Nice: IEEE, 2003. 750–757. [doi: 10.1109/ICCV.2003.1238424]
    [140] Rastegari M, Farhadi A, Forsyth D. Attribute discovery via predictable discriminative binary codes. In: Proc. of the 12th European Conf. on Computer Vision. Florence: Springer, 2012. 876–889. [doi: 10.1007/978-3-642-33783-3_63]
    [141] Xu XX, Lai ZH, Chen YD. Relaxed locality preserving supervised discrete hashing. IEEE Trans. on Big Data, 2022, 8(4): 1118–1128.
    [142] Xia RK, Pan Y, Lai HJ, Liu C, Yan SC. Supervised hashing for image retrieval via image representation learning. In: Proc. of the 28th AAAI Conf. on Artificial Intelligence. Québec City: AAAI, 2014. 2156–2162. [doi: 10.1609/aaai.v28i1.8952]
    [143] Yang HF, Tu CH, Chen CS. Learning binary hash codes based on adaptable label representations. IEEE Trans. on Neural Networks and Learning Systems, 2022, 33(11): 6961–6975.
    [144] Wu DY, Dai Q, Li B, Wang WP. Deep uncoupled discrete hashing via similarity matrix decomposition. ACM Trans. on Multimedia Computing, Communications, and Applications, 2023, 19(1): 22.
    [145] Liu L, Shao L, Shen FM, Yu MY. Discretely coding semantic rank orders for supervised image hashing. In: Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 5140–5149. [doi: 10.1109/CVPR.2017.546]
    [146] Chen YB, Guo KC, Liu FX, Huang YS, Qi ZW. Supervised contrastive vehicle quantization for efficient vehicle retrieval. In: Proc. of the 2022 Int’l Conf. on Multimedia Retrieval. Newark: ACM, 2022. 44–48. [doi: 10.1145/3512527.3531432]
    [147] Oliva A, Torralba A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int’l Journal of Computer Vision, 2001, 42(3): 145–175.
    [148] Lowe DG. Distinctive image features from scale-invariant keypoints. Int’l Journal of Computer Vision, 2004, 60(2): 91–110.
    [149] Guo ZH, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. on Image Processing, 2010, 19(6): 1657–1663.
    [150] Perronnin F, Liu Y, Sánchez J, Poirier H. Large-scale image retrieval with compressed fisher vectors. In: Proc. of the 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010. 3384–3391. [doi: 10.1109/CVPR.2010.5540009]
    [151] Jégou H, Douze M, Schmid C, Pérez P. Aggregating local descriptors into a compact image representation. In: Proc. of the 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010. 3304–3311. [doi: 10.1109/CVPR.2010.5540039]
    [152] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proc. of the 25th Int’l Conf. on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2012. 1097–1105.
    [153] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai XH, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S, Uszkoreit J, Houlsby N. An image is worth 16x16 words: Transformers for image recognition at scale. In: Proc. of the 9th Int’l Conf. on Learning Representations. OpenReview.net, 2021.
    [154] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. of the IEEE, 1998, 86(11): 2278–2324.
    [155] Fei-Fei L, Fergus R, Perona P. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 2007, 106(1): 59–70.
    [156] Griffin G, Holub A, Perona P. CALTECH-256 object category dataset. Technical Report 7694. Pasadena: California Institute of Technology, 2007.
    [157] Krizhevsky A. Learning multiple layers of features from tiny images. Technical Report, Toronto: University of Toronto, 2009.
    [158] Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL. Microsoft COCO: Common objects in context. In: Proc. of the 13th European Conf. on Computer Vision. Zurich: Springer, 2014. 740–755. [doi: 10.1007/978-3-319-10602-1_48]
    [159] Chua TS, Tang JH, Hong RC, Li HJ, Luo ZP, Zheng YT. NUS-WIDE: A real-world Web image database from national university of Singapore. In: Proc. of the 2009 Int’l Conf. on Image and Video Retrieval. Fira: ACM, 2009. 48. [doi: 10.1145/1646396.1646452]
    [160] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma SA, Huang ZH, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. ImageNet large scale visual recognition challenge. Int’l Journal of Computer Vision, 2015, 115(3): 211–252.
    [161] Torralba A, Fergus R, Freeman WT. 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1958–1970.
    [162] Liu XB, Nie XS, Zhou Q, Xi XM, Zhu L, Yin YL. Supervised short-length hashing. In: Proc. of the 28th Int’l Joint Conf. on Artificial Intelligence. Macao: AAAI, 2019. 3031–3037.
    [163] Liu XB, Nie XS, Dai Q, Huang YP, Lian L, Yin YL. Reinforced short-length hashing. IEEE Trans. on Circuits and Systems for Video Technology, 2021, 31(9): 3655–3668.
    [164] Zhou Q, Nie XS, Shi Y, Liu XB, Yin YL. Deep multi-region hashing. In: Proc. of the 2020 IEEE Int’l Conf. on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020. 1938–1942. [doi: 10.1109/ICASSP40776.2020.9054178]
    [165] Chen Y, Zhang H, Tian ZB, Wang J, Zhang D, Li XL. Enhanced discrete multi-modal hashing: More constraints yet less time to learn. IEEE Trans. on Knowledge and Data Engineering, 2022, 34(3): 1177–1190.
    [166] Lian DF, Xie X, Chen EH. Discrete matrix factorization and extension for fast item recommendation. IEEE Trans. on Knowledge and Data Engineering, 2021, 33(5): 1919–1933.
    [167] Liu HW, Li XL, Zhang SC, Tian Q. Adaptive hashing with sparse matrix factorization. IEEE Trans. on Neural Networks and Learning Systems, 2020, 31(10): 4318–4329.
    [168] Zheng CQ, Zhu L, Cheng ZY, Li JJ, Liu AA. Adaptive partial multi-view hashing for efficient social image retrieval. IEEE Trans. on Multimedia, 2021, 23: 4079–4092.
    [169] Liu X, Hu ZK, Ling HB, Cheung YM. MTFH: A matrix tri-factorization hashing framework for efficient cross-modal retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2021, 43(3): 964–981.
    [170] Chen ZD, Li CX, Luo X, Nie LQ, Zhang W, Xu XS. SCRATCH: A scalable discrete matrix factorization hashing framework for cross-modal retrieval. IEEE Trans. on Circuits and Systems for Video Technology, 2020, 30(7): 2262–2275.
    [171] Hong WX, Meng JJ, Yuan JS. Distributed composite quantization. In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence. New Orleans: AAAI, 2018. 61–68. [doi: 10.1609/aaai.v32i1.11294]
    [172] Xu D, Tsang IW, Zhang Y. Online product quantization. IEEE Trans. on Knowledge and Data Engineering, 2018, 30(11): 2185–2198.
    [173] Liu Q, Zhang J, Lian DF, Ge Y, Ma JH, Chen EH. Online additive quantization. In: Proc. of the 27th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. Singapore: ACM, 2021. 1098–1108. [doi: 10.1145/3447548.3467441]
    [174] 贺周雨, 冯旭鹏, 刘利军, 黄青松. 面向大规模图像检索的深度强相关散列学习方法. 计算机研究与发展, 2020, 57(11): 2375–2388.
    He ZY, Feng XP, Liu LJ, Huang QS. Deep highly interrelated hashing for fast image retrieval. Journal of Computer Research and Development, 2020, 57(11): 2375–2388 (in Chinese with English abstract).
    [175] Tu RC, Mao XL, Guo JN, Wei W, Huang HY. Partial-Softmax loss based deep hashing. In: Proc. of the 2021 World Wide Web Conf. Ljubljana: ACM, 2021. 2869–2878. [doi: 10.1145/3442381.3449825]
    [176] 李宗民, 张鹏, 刘玉杰, 李华. 结合注意力模型与双峰高斯分布的深度哈希检索算法. 计算机辅助设计与图形学学报, 2020, 32(5): 759–768.
    Li ZM, Zhang P, Liu YJ, Li H. Deep hashing retrieval algorithm combing attention model and bimodal Gaussian distribution. Journal of Computer-aided Design & Computer Graphics, 2020, 32(5): 759–768 (in Chinese with English abstract).
    [177] Lin MB, Ji RR, Liu H, Wu YJ. Supervised online hashing via Hadamard codebook learning. In: Proc. of the 26th Int’l ACM Conf. on Multimedia. Seoul: ACM, 2018. 1635–1643. [doi: 10.1145/3240508.3240519]
    [178] Lin MB, Ji RR, Chen S, Sun XS, Lin CW. Similarity-preserving linkage hashing for online image retrieval. IEEE Trans. on Image Processing, 2020, 29: 5289–5300.
    [179] Wang D, Wang Q, An YQ, Gao XB, Tian YM. Online collective matrix factorization hashing for large-scale cross-media retrieval. In: Proc. of the 43rd Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. Xi’an: ACM, 2020. 1409–1418.
    [180] Tian X, Ng WWY, Wang H. Concept preserving hashing for semantic image retrieval with concept drift. IEEE Trans. on Cybernetics, 2021, 51(10): 5184–5197.
    [181] Shen Y, Sun XH, Wei XS, Jiang QY, Yang J. SEMICON: A learning-to-hash solution for large-scale fine-grained image retrieval. In: Proc. of the 17th European Conf. on Computer Vision. Tel Aviv: Springer, 2022. 531–548. [doi: 10.1007/978-3-031-19781-9_31]
    [182] 董震, 裴明涛. 基于异构哈希网络的跨模态人脸检索方法. 计算机学报, 2019, 42(1): 73–84.
    Dong Z, Pei MT. Cross-modality face retrieval based on heterogeneous hashing network. Chinese Journal of Computers, 2019, 42(1): 73–84 (in Chinese with English abstract).
    [183] Yang EK, Liu MX, Yao DR, Cao B, Lian CF, Yap PT, Shen DG. Deep Bayesian hashing with center prior for multi-modal neuroimage retrieval. IEEE Trans. on Medical Imaging, 2021, 40(2): 503–513.
    [184] Li P, Han LR, Tao XW, Zhang XY, Grecos C, Plaza A, Ren P. Hashing nets for hashing: A quantized deep learning to hash framework for remote sensing image retrieval. IEEE Trans. on Geoscience and Remote Sensing, 2020, 58(10): 7331–7345.
    [185] Wang YX, Chen ZD, Luo X, Li R, Xu XS. Fast cross-modal hashing with global and local similarity embedding. IEEE Trans. on Cybernetics, 2022, 52(10): 10064–10077.
    [186] Liong VE, Lu JW, Duan LY, Tan YP. Deep variational and structural hashing. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2020, 42(3): 580–595.
    [187] 刘兴波, 聂秀山, 尹义龙. 基于双向线性回归的监督离散跨模态散列方法. 计算机研究与发展, 2020, 57(8): 1707–1714.
    Liu XB, Nie XS, Yin YL. Mutual linear regression based supervised discrete cross-modal hashing. Journal of Computer Research and Development, 2020, 57(8): 1707–1714 (in Chinese with English abstract).
    [188] Wang YM, Xue B, Cheng Q, Chen YH, Zhang LJ. Deep unified cross-modality hashing by pairwise data alignment. In: Proc. of the 30th Int’l Joint Conf. on Artificial Intelligence. Montreal: IJCAI.org, 2021. 1129–1135.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

张雪凝,刘兴波,宋井宽,聂秀山,王少华,尹义龙.面向大规模图像检索的哈希学习综述.软件学报,2025,36(1):79-106

Copy
Share
Article Metrics
  • Abstract:741
  • PDF: 2484
  • HTML: 919
  • Cited by: 0
History
  • Received:September 26,2022
  • Revised:February 11,2023
  • Online: May 08,2024
  • Published: January 06,2025
You are the first2049631Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063