Underground Application Collection Method Based on Spiking Traffic Analysis
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, with the rise of the mobile Internet, underground mobile applications primarily involved in scams, gambling, and pornography have become more rampant, requiring effective control measures. Currently, there is a lack of research on underground applications by researchers. Due to the continuous crackdown by law enforcement agencies on traditional distribution channels for these applications, the existing collection methods based on search engines and app stores have proven to be ineffective. The lack of large-scale and representative datasets of real-world underground applications has become a major constraint for in-depth research. Therefore, this study aims to address the challenge of collection of large-scale real-world underground applications, providing data support for a comprehensive in-depth analysis of these applications and their ecosystem. A method is proposed to capture underground applications based on traffic analysis. By focusing on the key distribution channels of underground applications and leveraging their characteristics of mutation and accompanying traffic, underground applications can be discovered in the propagation stage. In the test, the proposed method successfully obtained 3 439 application download links and 3 303 distinct applications. Among these apps, 91.61% of the samples were labeled as malware by antivirus engine, while 98.14% of the samples were zero-days. The results demonstrate the effectiveness of the proposed method in the collection of underground applications.

    Reference
    Related
    Cited by
Get Citation

陈沛,洪赓,邬梦莹,陈晋松,段海新,杨珉.一种基于突变流量的在野黑产应用采集方法.软件学报,2024,35(8):3684-3697

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 11,2023
  • Revised:October 30,2023
  • Adopted:
  • Online: January 05,2024
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063